Friday, January 31, 2025

The why behind the high: determinants of neurocognition during acute cannabis exposure

Share


  • 1.

    United Nations Office on Drugs and Crime. World Drug Report 2020 https://wdr.unodc.org/wdr2020/index.html (2020).

  • 2.

    Hall, W. & Lynskey, M. Evaluating the public health impacts of legalizing recreational cannabis use in the United States. Addiction 111, 1764–1773 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Hasin, D. S., Shmulewitz, D. & Sarvet, A. L. Time trends in US cannabis use and cannabis use disorders overall and by sociodemographic subgroups: a narrative review and new findings. Am. J. Drug Alcohol. Abuse 45, 623–643 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Abrams, D. I. The therapeutic effects of cannabis and cannabinoids: an update from the national academies of sciences, engineering and medicine report. Eur. J. Intern. Med. 49, 7–11 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Kilmer, B. & Pacula, R. L. Understanding and learning from the diversification of cannabis supply laws. Addiction 112, 1128–1135 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    ElSohly, M. A. et al. Changes in cannabis potency over the last 2 decades (1995–2014): analysis of current data in the United States. Biol. Psychiatry 79, 613–619 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Spindle, T. R., Bonn-Miller, M. O. & Vandrey, R. Changing landscape of cannabis: novel products, formulations, and methods of administration. Curr. Opin. Psychol. 30, 98–102 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Cash, M. C., Cunnane, K., Fan, C. & Romero-Sandoval, E. A. Mapping cannabis potency in medical and recreational programs in the United States. PLoS ONE 15, e0230167 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Freeman, T. P. et al. Increasing potency and price of cannabis in Europe, 2006–16. Addiction 114, 1015–1023 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Swift, W., Wong, A., Li, K. M., Arnold, J. C. & McGregor, I. S. Analysis of cannabis seizures in NSW, Australia: cannabis potency and cannabinoid profile. PLoS ONE 8, e70052 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Ramaekers, J. G. et al. High-potency marijuana impairs executive function and inhibitory motor control. Neuropsychopharmacology 31, 2296–2303 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Ramaekers, J. G., Kauert, G., Theunissen, E. L., Toennes, S. W. & Moeller, M. R. Neurocognitive performance during acute THC intoxication in heavy and occasional cannabis users. J. Psychopharmacol. 23, 266–277 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Gonzalez, R. Acute and non-acute effects of cannabis on brain functioning and neuropsychological performance. Neuropsychol. Rev. 17, 347–361 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Bossong, M. G., Jager, G., Bhattacharyya, S. & Allen, P. Acute and non-acute effects of cannabis on human memory function: a critical review of neuroimaging studies. Curr. Pharm. Des. 20, 2114–2125 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Crane, N. A., Schuster, R. M., Fusar-Poli, P. & Gonzalez, R. Effects of cannabis on neurocognitive functioning: recent advances, neurodevelopmental influences, and sex differences. Neuropsychol. Rev. 23, 117–137 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Crean, R. D., Crane, N. A. & Mason, B. J. An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. J. Addict. Med. 5, 1–8 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Desrosiers, N. A., Ramaekers, J. G., Chauchard, E., Gorelick, D. A. & Huestis, M. A. Smoked cannabis’ psychomotor and neurocognitive effects in occasional and frequent smokers. J. Anal. Toxicol. 39, 251–261 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Newmeyer, M. N. et al. Free and glucuronide whole blood cannabinoids’ pharmacokinetics after controlled smoked, vaporized, and oral cannabis administration in frequent and occasional cannabis users: identification of recent cannabis intake. Clin. Chem. 62, 1579–1592 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Broyd, S. J., van Hell, H. H., Beale, C., Yucel, M. & Solowij, N. Acute and chronic effects of cannabinoids on human cognition—a systematic review. Biol. Psychiatry 79, 557–567 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Curran, H. V. et al. Keep off the grass? Cannabis, cognition and addiction. Nat. Rev. Neurosci. 17, 293–306 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Arkell, T. R. et al. Effect of cannabidiol and Δ9-tetrahydrocannabinol on driving performance: a randomized clinical trial. JAMA 324, 2177–2186 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Curran, H. V., Brignell, C., Fletcher, S., Middleton, P. & Henry, J. Cognitive and subjective dose–response effects of acute oral Δ9-tetrahydrocannabinol (THC) in infrequent cannabis users. Psychopharmacology 164, 61–70 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Ranganathan, M. & D’Souza, D. C. The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology 188, 425–444 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Miller, L., Cornett, T. & McFarland, D. Marijuana: an analysis of storage and retrieval deficits in memory with the technique of restricted remiding. Pharmacol. Biochem. Behav. 8, 327–332 (1978).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Doss, M. K., Weafer, J., Gallo, D. A. & de Wit, H. Δ9-Tetrahydrocannabinol at retrieval drives false recollection of neutral and emotional memories. Biol. Psychiatry 84, 743–750 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Kloft, L. et al. False memory formation in cannabis users: a field study. Psychopharmacology 236, 3439–3450 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Kloft, L. et al. Cannabis increases susceptibility to false memory. Proc. Natl Acad. Sci. USA 117, 4585–4589 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    D’Souza, D. C. et al. Blunted psychotomimetic and amnestic effects of Δ9-tetrahydrocannabinol in frequent users of cannabis. Neuropsychopharmacology 33, 2505–2516 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Ballard, M. E., Bedi, G. & de Wit, H. Effects of Δ9-tetrahydrocannabinol on evaluation of emotional images. J. Psychopharmacol. 26, 1289–1298 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Zuurman, L. et al. Effect of intrapulmonary tetrahydrocannabinol administration in humans. J. Psychopharmacol. 22, 707–716 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    van Wel, J. et al. Psychedelic symptoms of cannabis and cocaine use as a function of trait impulsivity. J. Psychopharmacol. 29, 324–334 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Bhattacharyya, S. et al. Induction of psychosis by Δ9-tetrahydrocannabinol reflects modulation of prefrontal and striatal function during attentional salience processing. Arch. Gen. Psychiatry 69, 27–36 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Bhattacharyya, S. et al. Impairment of inhibitory control processing related to acute psychotomimetic effects of cannabis. Eur. Neuropsychopharmacol. 25, 26–37 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Colizzi, M. et al. Modulation of acute effects of Δ9-tetrahydrocannabinol on psychotomimetic effects, cognition and brain function by previous cannabis exposure. Eur. Neuropsychopharmacol. 28, 850–862 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Stokes, P. R., Mehta, M. A., Curran, H. V., Breen, G. & Grasby, P. M. Can recreational doses of THC produce significant dopamine release in the human striatum? Neuroimage 48, 186–190 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Colizzi, M., Weltens, N., McGuire, P., Van Oudenhove, L. & Bhattacharyya, S. Descriptive psychopathology of the acute effects of intravenous Δ9-tetrahydrocannabinol administration in humans. Brain Sci. 9, 93 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Favrat, B. et al. Two cases of “cannabis acute psychosis” following the administration of oral cannabis. BMC Psychiatry 5, 17 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Barrett, F. S., Schlienz, N. J., Lembeck, N., Waqas, M. & Vandrey, R. “Hallucinations” following acute cannabis dosing: a case report and comparison to other hallucinogenic drugs. Cannabis Cannabinoid Res. 3, 85–93 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Hall, W. What has research over the past two decades revealed about the adverse health effects of recreational cannabis use? Addiction 110, 19–35 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Horwood, L. J. et al. Cannabis use and educational achievement: findings from three Australasian cohort studies. Drug Alcohol. Depend. 110, 247–253 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Silins, E. et al. Young adult sequelae of adolescent cannabis use: an integrative analysis. Lancet Psychiatry 1, 286–293 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Macdonald, S. et al. Testing for cannabis in the work-place: a review of the evidence. Addiction 105, 408–416 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Ramaekers, J. G., Berghaus, G., van Laar, M. & Drummer, O. H. Dose related risk of motor vehicle crashes after cannabis use. Drug Alcohol. Depend. 73, 109–119 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Hartman, R. L. & Huestis, M. A. Cannabis effects on driving skills. Clin. Chem. 59, 478–492 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Bondallaz, P. et al. Cannabis and its effects on driving skills. Forensic Sci. Int. 268, 92–102 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Asbridge, M., Hayden, J. A. & Cartwright, J. L. Acute cannabis consumption and motor vehicle collision risk: systematic review of observational studies and meta-analysis. BMJ 344, e536 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Li, M. C. et al. Marijuana use and motor vehicle crashes. Epidemiol. Rev. 34, 65–72 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Rogeberg, O. & Elvik, R. The effects of cannabis intoxication on motor vehicle collision revisited and revised. Addiction 111, 1348–1359 (2016).

    Article 

    Google Scholar 

  • 49.

    Colizzi, M. & Bhattacharyya, S. Cannabis use and the development of tolerance: a systematic review of human evidence. Neurosci. Biobehav. Rev. 93, 1–25 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Ramaekers, J. G., Mason, N. L. & Theunissen, E. L. Blunted highs: pharmacodynamic and behavioral models of cannabis tolerance. Eur. Neuropsychopharmacol. 36, 191–205 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Volkow, N. D. et al. Effects of cannabis use on human behavior, including cognition, motivation, and psychosis: a review. JAMA Psychiatry 73, 292–297 (2016).

    Article 

    Google Scholar 

  • 52.

    Ferland, J. N. & Hurd, Y. L. Deconstructing the neurobiology of cannabis use disorder. Nat. Neurosci. 23, 600–610 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Hashimotodani, Y., Ohno-Shosaku, T. & Kano, M. Endocannabinoids and synaptic function in the CNS. Neuroscientist 13, 127–137 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Mackie, K. Cannabinoid receptors: where they are and what they do. J. Neuroendocrinol. 20 (Suppl. 1), 10–14 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Freund, T. F., Katona, I. & Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 83, 1017–1066 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Zou, S. & Kumar, U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int. J. Mol. Sci. 19, 833 (2018).

    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Iversen, L. Cannabis and the brain. Brain 126, 1252–1270 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Goonawardena, A. V., Robinson, L., Hampson, R. E. & Riedel, G. Cannabinoid and cholinergic systems interact during performance of a short-term memory task in the rat. Learn. Mem. 17, 502–511 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Prini, P. et al. Neurobiological mechanisms underlying cannabis-induced memory impairment. Eur. Neuropsychopharmacol. 36, 181–190 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Van Waes, V., Beverley, J. A., Siman, H., Tseng, K. Y. & Steiner, H. CB1 cannabinoid receptor expression in the striatum: association with corticostriatal circuits and developmental regulation. Front. Pharmacol. 3, 21 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Bonelli, R. M. & Cummings, J. L. Frontal-subcortical circuitry and behavior. Dialogues Clin. Neurosci. 9, 141–151 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Silveira, M. M. et al. Seeing through the smoke: human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neurosci. Biobehav. Rev. 76, 380–395 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Bloomfield, M. A. P. et al. The neuropsychopharmacology of cannabis: a review of human imaging studies. Pharmacol. Ther. 195, 132–161 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Mathew, R. J., Wilson, W. H., Humphreys, D. F., Lowe, J. V. & Wiethe, K. E. Regional cerebral blood flow after marijuana smoking. J. Cereb. Blood Flow. Metab. 12, 750–758 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Klumpers, L. E. et al. Manipulating brain connectivity with Δ9-tetrahydrocannabinol: a pharmacological resting state FMRI study. Neuroimage 63, 1701–1711 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Wall, M. B. et al. Dissociable effects of cannabis with and without cannabidiol on the human brain’s resting-state functional connectivity. J. Psychopharmacol. 33, 822–830 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Zaytseva, Y. et al. Cannabis-induced altered states of consciousness are associated with specific dynamic brain connectivity states. J. Psychopharmacol. 33, 811–821 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Pierce, R. C. & Kumaresan, V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci. Biobehav. Rev. 30, 215–238 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D. & Telang, F. Addiction: beyond dopamine reward circuitry. Proc. Natl Acad. Sci. USA 108, 15037–15042 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Bossong, M. G. et al. Δ9-Tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 34, 759–766 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Kuepper, R. et al. Δ9-Tetrahydrocannabinol-induced dopamine release as a function of psychosis risk: 18F-fallypride positron emission tomography study. PLoS ONE 8, e70378 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Bossong, M. G. et al. Further human evidence for striatal dopamine release induced by administration of 9-tetrahydrocannabinol (THC): selectivity to limbic striatum. Psychopharmacology 232, 2723–2729 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Ramaekers, J. G. et al. Methylphenidate reduces functional connectivity of nucleus accumbens in brain reward circuit. Psychopharmacology 229, 219–226 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Ramaekers, J. G. et al. Cannabis and cocaine decrease cognitive impulse control and functional corticostriatal connectivity in drug users with low activity DBH genotypes. Brain Imaging Behav. 10, 1254–1263 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Mason, N. L. et al. Cannabis induced increase in striatal glutamate associated with loss of functional corticostriatal connectivity. Eur. Neuropsychopharmacol. 29, 247–256 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Mason, N. L. et al. Reduced responsiveness of the reward system is associated with tolerance to cannabis impairment in chronic users. Addict. Biol. 26, e12870 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Bloomfield, M. A., Ashok, A. H., Volkow, N. D. & Howes, O. D. The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature 539, 369–377 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Colizzi, M. et al. Δ9-Tetrahydrocannabinol increases striatal glutamate levels in healthy individuals: implications for psychosis. Mol. Psychiatry 25, 3231–3240 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 80.

    McCutcheon, R. A. et al. Mesolimbic dopamine function is related to salience network connectivity: an integrative positron emission tomography and magnetic resonance study. Biol. Psychiatry 85, 368–378 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Kucyi, A., Hodaie, M. & Davis, K. D. Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J. Neurophysiol. 108, 3382–3392 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 83.

    Hermans, E. J., Henckens, M. J., Joels, M. & Fernandez, G. Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci. 37, 304–314 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Menon, V. in Brain Mapping: An Encyclopedic Reference Vol. 2 (ed. Toga, A. W.) 597–611 (Academic Press: Elsevier, 2015).

  • 85.

    Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 86.

    Hermans, E. J. et al. Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science 334, 1151–1153 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Shafiei, G. et al. Dopamine signaling modulates the stability and integration of intrinsic brain networks. Cereb. Cortex 29, 397–409 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 88.

    Seeley, W. W. The salience network: a neural system for perceiving and responding to homeostatic demands. J. Neurosci. 39, 9878–9882 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Dosenbach, N. U. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl Acad. Sci. USA 104, 11073–11078 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 90.

    Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    van Hell, H. H. et al. Evidence for involvement of the insula in the psychotropic effects of THC in humans: a double-blind, randomized pharmacological MRI study. Int. J. Neuropsychopharmacol. 14, 1377–1388 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 92.

    Bossong, M. G. et al. Acute effects of 9-tetrahydrocannabinol (THC) on resting state brain function and their modulation by COMT genotype. Eur. Neuropsychopharmacol. 29, 766–776 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 93.

    Jansma, J. M. et al. THC reduces the anticipatory nucleus accumbens response to reward in subjects with a nicotine addiction. Transl. Psychiatry 3, e234 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    de Sousa Fernandes Perna, E. B. et al. Brain reactivity to alcohol and cannabis marketing during sobriety and intoxication. Addict. Biol. 22, 823–832 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 95.

    Freeman, T. P. et al. Cannabis dampens the effects of music in brain regions sensitive to reward and emotion. Int. J. Neuropsychopharmacol. 21, 21–32 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 96.

    Bhattacharyya, S. et al. Cannabinoid modulation of functional connectivity within regions processing attentional salience. Neuropsychopharmacology 40, 1343–1352 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Battistella, G. et al. Weed or wheel! FMRI, behavioural, and toxicological investigations of how cannabis smoking affects skills necessary for driving. PLoS ONE 8, e52545 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 98.

    Weinstein, A. et al. Brain imaging study of the acute effects of Δ9-tetrahydrocannabinol (THC) on attention and motor coordination in regular users of marijuana. Psychopharmacology 196, 119–131 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 99.

    Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Bossong, M. G. et al. Default mode network in the effects of Δ9-tetrahydrocannabinol (THC) on human executive function. PLoS ONE 8, e70074 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 101.

    Borgwardt, S. J. et al. Neural basis of Δ9-tetrahydrocannabinol and cannabidiol: effects during response inhibition. Biol. Psychiatry 64, 966–973 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 102.

    Bhattacharyya, S. et al. Opposite effects of Δ9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology 35, 764–774 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 103.

    Theunissen, E. L. et al. Rivastigmine but not vardenafil reverses cannabis-induced impairment of verbal memory in healthy humans. Psychopharmacology 232, 343–353 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 104.

    Adam, K. C. S., Doss, M. K., Pabon, E., Vogel, E. K. & de Wit, H. Δ9-Tetrahydrocannabinol (THC) impairs visual working memory performance: a randomized crossover trial. Neuropsychopharmacology 45, 1807–1816 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 105.

    Doss, M. K., Weafer, J., Gallo, D. A. & de Wit, H. Δ9-Tetrahydrocannabinol during encoding impairs perceptual details yet spares context effects on episodic memory. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 110–118 (2020).

    PubMed 

    Google Scholar 

  • 106.

    Tzavara, E. T., Wade, M. & Nomikos, G. G. Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: site and mechanism of action. J. Neurosci. 23, 9374–9384 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 107.

    Bossong, M. G. et al. Effects of Δ9-tetrahydrocannabinol administration on human encoding and recall memory function: a pharmacological FMRI study. J. Cogn. Neurosci. 24, 588–599 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 108.

    Bhattacharyya, S. et al. Modulation of mediotemporal and ventrostriatal function in humans by Δ9-tetrahydrocannabinol: a neural basis for the effects of Cannabis sativa on learning and psychosis. Arch. Gen. Psychiatry 66, 442–451 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 109.

    Bhattacharyya, S. et al. Increased hippocampal engagement during learning as a marker of sensitivity to psychotomimetic effects of Δ-9-THC. Psychol. Med. 48, 2748–2756 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 110.

    Bossong, M. G. et al. Effects of Δ9-tetrahydrocannabinol on human working memory function. Biol. Psychiatry 71, 693–699 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 111.

    Sherif, M., Radhakrishnan, R., D’Souza, D. C. & Ranganathan, M. Human laboratory studies on cannabinoids and psychosis. Biol. Psychiatry 79, 526–538 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 112.

    Radhakrishnan, R. et al. GABA deficits enhance the psychotomimetic effects of Δ9-THC. Neuropsychopharmacology 40, 2047–2056 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 113.

    Kreek, M. J., Nielsen, D. A., Butelman, E. R. & LaForge, K. S. Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat. Neurosci. 8, 1450–1457 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 114.

    Hess, C. et al. A functional dopamine-beta-hydroxylase gene promoter polymorphism is associated with impulsive personality styles, but not with affective disorders. J. Neural Transm. 116, 121–130 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 115.

    Kohnke, M. D. et al. A genotype-controlled analysis of plasma dopamine β-hydroxylase in healthy and alcoholic subjects: evidence for alcohol-related differences in noradrenergic function. Biol. Psychiatry 52, 1151–1158 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 116.

    Brody, A. L. et al. Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch. Gen. Psychiatry 63, 808–816 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 117.

    Yavich, L., Forsberg, M. M., Karayiorgou, M., Gogos, J. A. & Mannisto, P. T. Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J. Neurosci. 27, 10196–10209 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 118.

    Henquet, C. et al. An experimental study of catechol-O-methyltransferase Val158Met moderation of Δ-9-tetrahydrocannabinol-induced effects on psychosis and cognition. Neuropsychopharmacology 31, 2748–2757 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 119.

    Tunbridge, E. M. et al. Genetic moderation of the effects of cannabis: catechol-O-methyltransferase (COMT) affects the impact of Δ9-tetrahydrocannabinol (THC) on working memory performance but not on the occurrence of psychotic experiences. J. Psychopharmacol. 29, 1146–1151 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 120.

    Ranganathan, M. et al. Highs and lows of cannabinoid–dopamine interactions: effects of genetic variability and pharmacological modulation of catechol-O-methyl transferase on the acute response to Δ-9-tetrahydrocannabinol in humans. Psychopharmacology 236, 3209–3219 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 121.

    Bhattacharyya, S. et al. Preliminary report of biological basis of sensitivity to the effects of cannabis on psychosis: AKT1 and DAT1 genotype modulates the effects of Δ-9-tetrahydrocannabinol on midbrain and striatal function. Mol. Psychiatry 17, 1152–1155 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 122.

    Shumay, E. et al. New repeat polymorphism in the AKT1 gene predicts striatal dopamine D2/D3 receptor availability and stimulant-induced dopamine release in the healthy human brain. J. Neurosci. 37, 4982–4991 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 123.

    Nordstrom, B. R. & Hart, C. L. Assessing cognitive functioning in cannabis users: cannabis use history an important consideration. Neuropsychopharmacology 31, 2798–2799 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 124.

    Ramaekers, J. G. et al. Tolerance and cross-tolerance to neurocognitive effects of THC and alcohol in heavy cannabis users. Psychopharmacology 214, 391–401 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 125.

    Foltin, R. W. in Encyclopedia of Psychopharmacology (eds Price L. & Stolerman, I.) https://doi.org/10.1007/978-3-642-27772-6_58-2 (Springer, 2013).

  • 126.

    Breivogel, C. S. et al. Chronic Δ9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J. Neurochem. 73, 2447–2459 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 127.

    McKinney, D. L. et al. Dose-related differences in the regional pattern of cannabinoid receptor adaptation and in vivo tolerance development to Δ9-tetrahydrocannabinol. J. Pharmacol. Exp. Ther. 324, 664–673 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 128.

    Hirvonen, J. et al. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Mol. Psychiatry 17, 642–649 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 129.

    Ceccarini, J. et al. [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addict. Biol. 20, 357–367 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 130.

    D’Souza, D. C. et al. Rapid changes in CB1 receptor availability in cannabis dependent males after abstinence from cannabis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1, 60–67 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 131.

    Cadoni, C., Valentini, V. & Di Chiara, G. Behavioral sensitization to Δ9-tetrahydrocannabinol and cross-sensitization with morphine: differential changes in accumbal shell and core dopamine transmission. J. Neurochem. 106, 1586–1593 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 132.

    Zhou, X. et al. Cue reactivity in the ventral striatum characterizes heavy cannabis use, whereas reactivity in the dorsal striatum mediates dependent use. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 751–762 (2019).

    PubMed 

    Google Scholar 

  • 133.

    Pope, H. G. Jr, Gruber, A. J., Hudson, J. I., Huestis, M. A. & Yurgelun-Todd, D. Neuropsychological performance in long-term cannabis users. Arch. Gen. Psychiatry 58, 909–915 (2001).

    PubMed 
    Article 

    Google Scholar 

  • 134.

    Bosker, W. M. et al. Psychomotor function in chronic daily cannabis smokers during sustained abstinence. PLoS ONE 8, e53127 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 135.

    Lorenzetti, V., Solowij, N. & Yucel, M. The role of cannabinoids in neuroanatomic alterations in cannabis users. Biol. Psychiatry 79, e17–e31 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 136.

    Schreiner, A. M. & Dunn, M. E. Residual effects of cannabis use on neurocognitive performance after prolonged abstinence: a meta-analysis. Exp. Clin. Psychopharmacol. 20, 420–429 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 137.

    Cha, Y. M., White, A. M., Kuhn, C. M., Wilson, W. A. & Swartzwelder, H. S. Differential effects of Δ9-THC on learning in adolescent and adult rats. Pharmacol. Biochem. Behav. 83, 448–455 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 138.

    Schneider, M., Schomig, E. & Leweke, F. M. Acute and chronic cannabinoid treatment differentially affects recognition memory and social behavior in pubertal and adult rats. Addict. Biol. 13, 345–357 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 139.

    Carvalho, A. F., Reyes, B. A., Ramalhosa, F., Sousa, N. & Van Bockstaele, E. J. Repeated administration of a synthetic cannabinoid receptor agonist differentially affects cortical and accumbal neuronal morphology in adolescent and adult rats. Brain Struct. Funct. 221, 407–419 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 140.

    Mokrysz, C., Freeman, T. P., Korkki, S., Griffiths, K. & Curran, H. V. Are adolescents more vulnerable to the harmful effects of cannabis than adults? A placebo-controlled study in human males. Transl. Psychiatry 6, e961 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 141.

    Matheson, J. et al. Sex differences in the acute effects of smoked cannabis: evidence from a human laboratory study of young adults. Psychopharmacology 237, 305–316 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 142.

    Spindle, T. R. et al. Acute pharmacokinetic profile of smoked and vaporized cannabis in human blood and oral fluid. J. Anal. Toxicol. 43, 233–258 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 143.

    Sholler, D. J., Strickland, J. C., Spindle, T. R., Weerts, E. M. & Vandrey, R. Sex differences in the acute effects of oral and vaporized cannabis among healthy adults. Addict. Biol. https://doi.org/10.1111/adb.12968 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 144.

    Munro, C. A. et al. Sex differences in striatal dopamine release in healthy adults. Biol. Psychiatry 59, 966–974 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 145.

    Evans, S. M. & Foltin, R. W. Exogenous progesterone attenuates the subjective effects of smoked cocaine in women, but not in men. Neuropsychopharmacology 31, 659–674 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 146.

    Evans, S. M., Haney, M. & Foltin, R. W. The effects of smoked cocaine during the follicular and luteal phases of the menstrual cycle in women. Psychopharmacology 159, 397–406 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 147.

    Cooper, Z. D. & Craft, R. M. Sex-dependent effects of cannabis and cannabinoids: a translational perspective. Neuropsychopharmacology 43, 34–51 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 148.

    Hunault, C. C. et al. Cognitive and psychomotor effects in males after smoking a combination of tobacco and cannabis containing up to 69 mg Δ-9-tetrahydrocannabinol (THC). Psychopharmacology 204, 85–94 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 149.

    Vandrey, R. et al. Pharmacokinetic profile of oral cannabis in humans: blood and oral fluid disposition and relation to pharmacodynamic outcomes. J. Anal. Toxicol. 41, 83–99 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 150.

    Oleson, E. B. & Cheer, J. F. A brain on cannabinoids: the role of dopamine release in reward seeking. Cold Spring Harb. Perspect. Med. 2, a012229 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 151.

    Ramaekers, J. G. et al. Cognition and motor control as a function of Δ9-THC concentration in serum and oral fluid: limits of impairment. Drug Alcohol. Depend. 85, 114–122 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 152.

    Spindle, T. R. et al. Acute effects of smoked and vaporized cannabis in healthy adults who infrequently use cannabis: a crossover trial. JAMA Netw. Open 1, e184841 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 153.

    Grotenhermen, F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin. Pharmacokinet. 42, 327–360 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 154.

    Huestis, M. A. Human cannabinoid pharmacokinetics. Chem. Biodivers. 4, 1770–1804 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 155.

    Hunault, C. C. et al. Acute subjective effects after smoking joints containing up to 69 mg Δ9-tetrahydrocannabinol in recreational users: a randomized, crossover clinical trial. Psychopharmacology 231, 4723–4733 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 156.

    McCartney, D., Arkell, T. R., Irwin, C. & McGregor, I. S. Determining the magnitude and duration of acute Δ9-tetrahydrocannabinol (Δ9-THC)-induced driving and cognitive impairment: a systematic and meta-analytic review. Neurosci. Biobehav. Rev. 126, 175–193 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 157.

    Newmeyer, M. N., Swortwood, M. J., Abulseoud, O. A. & Huestis, M. A. Subjective and physiological effects, and expired carbon monoxide concentrations in frequent and occasional cannabis smokers following smoked, vaporized, and oral cannabis administration. Drug Alcohol. Depend. 175, 67–76 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 158.

    Hollister, L. E. Structure–activity relationships in man of cannabis constituents, and homologs and metabolites of Δ9-tetrahydrocannabinol. Pharmacology 11, 3–11 (1974).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 159.

    Poyatos, L. et al. Oral administration of cannabis and Δ-9-tetrahydrocannabinol (THC) preparations: a systematic review. Medicina 56, 309 (2020).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 160.

    Englund, A., Freeman, T. P., Murray, R. M. & McGuire, P. Can we make cannabis safer? Lancet Psychiatry 4, 643–648 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 161.

    Jikomes, N. & Zoorob, M. The cannabinoid content of legal cannabis in washington state varies systematically across testing facilities and popular consumer products. Sci. Rep. 8, 4519 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 162.

    Arkell, T. R. et al. Cannabidiol (CBD) content in vaporized cannabis does not prevent tetrahydrocannabinol (THC)-induced impairment of driving and cognition. Psychopharmacology 263, 2713–2723 d (2019).

    Article 
    CAS 

    Google Scholar 

  • 163.

    Cinnamon Bidwell, L., YorkWilliams, S. L., Mueller, R. L., Bryan, A. D. & Hutchison, K. E. Exploring cannabis concentrates on the legal market: user profiles, product strength, and health-related outcomes. Addict. Behav. Rep. 8, 102–106 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 164.

    Bidwell, L. C. et al. Association of naturalistic administration of cannabis flower and concentrates with intoxication and impairment. JAMA Psychiatry 77, 787–796 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 165.

    Alzghari, S. K., Fung, V., Rickner, S. S., Chacko, L. & Fleming, S. W. To dab or not to dab: rising concerns regarding the toxicity of cannabis concentrates. Cureus 9, e1676 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 166.

    EMCDDA. European Drug Report 2017. Trends and Developments (EMCDDA, 2017).

  • 167.

    Adams, A. J. et al. “Zombie” outbreak caused by the synthetic cannabinoid AMB-FUBINACA in New York. N. Engl. J. Med. 376, 235–242 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 168.

    Alves, V. L., Goncalves, J. L., Aguiar, J., Teixeira, H. M. & Camara, J. S. The synthetic cannabinoids phenomenon: from structure to toxicological properties. A review. Crit. Rev. Toxicol. 50, 359–382 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 169.

    Ossato, A. et al. Psychostimulant effect of the synthetic cannabinoid JWH-018 and AKB48: behavioral, neurochemical, and dopamine transporter scan imaging studies in mice. Front. Psychiatry 8, 130 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 170.

    Basavarajappa, B. S. & Subbanna, S. Potential mechanisms underlying the deleterious effects of synthetic cannabinoids found in Spice/K2 products. Brain Sci. 9, 14 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 171.

    Auwarter, V. et al. ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? JMS 44, 832–837 (2009).

    PubMed 

    Google Scholar 

  • 172.

    Spaderna, M., Addy, P. H. & D’Souza, D. C. Spicing things up: synthetic cannabinoids. Psychopharmacology 228, 525–540 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 173.

    Theunissen, E. L. et al. Neurocognition and subjective experience following acute doses of the synthetic cannabinoid JWH-018: a phase 1, placebo-controlled, pilot study. Br. J. Pharmacol. 175, 18–28 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 174.

    Theunissen, E. L. et al. Neurocognition and subjective experience following acute doses of the synthetic cannabinoid JWH-018: responders versus nonresponders. Cannabis Cannabinoid Res. 4, 51–61 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 175.

    Theunissen, E. L. et al. Psychotomimetic symptoms after a moderate dose of a synthetic cannabinoid (JWH-018): implications for psychosis. Psychopharmacology https://doi.org/10.1007/s00213-021-05768-0 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 176.

    Theunissen, E. L. et al. Intoxication by a synthetic cannabinoid (JWH-018) causes cognitive and psychomotor impairment in recreational cannabis users. Pharmacol. Biochem. Behav. 202, 173118 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 177.

    Toennes, S. W. et al. Pharmacokinetic properties of the synthetic cannabinoid JWH-018 and of its metabolites in serum after inhalation. J. Pharm. Biomed. Anal. 140, 215–222 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 178.

    Olla, P. et al. Short-term effects of cannabis consumption on cognitive performance in medical cannabis patients. Appl. Neuropsychol. Adult https://doi.org/10.1080/23279095.2019.1681424 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 179.

    Gruber, S. A. et al. Splendor in the grass? A pilot study assessing the impact of medical marijuana on executive function. Front. Pharmacol. 7, 355 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 180.

    Gruber, S. A. et al. The grass might be greener: medical marijuana patients exhibit altered brain activity and improved executive function after 3 months of treatment. Front. Pharmacol. 8, 983 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 181.

    Muller-Vahl, K. R. et al. Treatment of Tourette syndrome with Δ-9-tetrahydrocannabinol (Δ9-THC): no influence on neuropsychological performance. Neuropsychopharmacology 28, 384–388 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 182.

    Honarmand, K., Tierney, M. C., O’Connor, P. & Feinstein, A. Effects of cannabis on cognitive function in patients with multiple sclerosis. Neurology 76, 1153–1160 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 183.

    Banister, S. D., Krishna Kumar, K., Kumar, V., Kobilka, B. K. & Malhotra, S. V. Selective modulation of the cannabinoid type 1 (CB1) receptor as an emerging platform for the treatment of neuropathic pain. Medchemcomm 10, 647–659 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 184.

    Kim, K. H., Seo, H. J., Abdi, S. & Huh, B. All about pain pharmacology: what pain physicians should know. Korean J. Pain 33, 108–120 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 185.

    Moriarty, O., McGuire, B. E. & Finn, D. P. The effect of pain on cognitive function: a review of clinical and preclinical research. Prog. Neurobiol. 93, 385–404 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 186.

    Deleens, R., Pickering, G. & Hadjiat, Y. Pain in the elderly and cognition: state of play. Geriatr. Psychol. Neuropsychiatr. Vieil. 15, 345–356 (2017).

    PubMed 

    Google Scholar 

  • 187.

    Veldhuijzen, D. S. et al. Effect of chronic nonmalignant pain on highway driving performance. Pain 122, 28–35 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 188.

    Veldhuijzen, D. S. et al. Acute and subchronic effects of amitriptyline 25 mg on actual driving in chronic neuropathic pain patients. J. Psychopharmacol. 20, 782–788 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 189.

    Sabatowski, R., Scharnagel, R., Gyllensvard, A. & Steigerwald, I. Driving ability in patients with severe chronic low back or osteoarthritis knee pain on stable treatment with tapentadol prolonged release: a multicenter, open-label, phase 3b trial. Pain. Ther. 3, 17–29 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 190.

    Bonar, E. E. et al. Driving under the influence of cannabis among medical cannabis patients with chronic pain. Drug Alcohol. Depend. 195, 193–197 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 191.

    de la Fuente-Sandoval, C. et al. Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: a longitudinal proton magnetic resonance spectroscopy study. JAMA Psychiatry 70, 1057–1066 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 192.

    Jelen, L. A., King, S., Mullins, P. G. & Stone, J. M. Beyond static measures: a review of functional magnetic resonance spectroscopy and its potential to investigate dynamic glutamatergic abnormalities in schizophrenia. J. Psychopharmacol. 32, 497–508 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 193.

    McCutcheon, R. A., Krystal, J. H. & Howes, O. D. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 19, 15–33 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 194.

    Jauhar, S. et al. The relationship between cortical glutamate and striatal dopamine in first-episode psychosis: a cross-sectional multimodal PET and magnetic resonance spectroscopy imaging study. Lancet Psychiatry 5, 816–823 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 195.

    Radhakrishnan, R., Wilkinson, S. T. & D’Souza, D. C. Gone to pot—a review of the association between cannabis and psychosis. Front. Psychiatry 5, 54 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 196.

    Rentero Martin, D., Arias, F., Sanchez-Romero, S., Rubio, G. & Rodriguez-Jimenez, R. Cannabis-induced psychosis: clinical characteristics and its differentiation from schizophrenia with and without cannabis use. Adicciones 33, 95–108 (2020).

    Article 

    Google Scholar 

  • 197.

    Singer, H. S. Motor control, habits, complex motor stereotypies, and Tourette syndrome. Ann. NY Acad. Sci. 1304, 22–31 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 198.

    Kanaan, A. S. et al. Pathological glutamatergic neurotransmission in Gilles de la Tourette syndrome. Brain 140, 218–234 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 199.

    Brunnauer, A. et al. Cannabinoids improve driving ability in a Tourette’s patient. Psychiatry Res. 190, 382 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 200.

    Karschner, E. L., Swortwood-Gates, M. J. & Huestis, M. A. Identifying and quantifying cannabinoids in biological matrices in the medical and legal cannabis era. Clin. Chem. 66, 888–914 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 201.

    Rogeberg, O. A meta-analysis of the crash risk of cannabis-positive drivers in culpability studies — avoiding interpretational bias. Accid. Anal. Prev. 123, 69–78 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 202.

    Gjerde, H. & Morland, J. Risk for involvement in road traffic crash during acute cannabis intoxication. Addiction 111, 1492–1495 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 203.

    Peng, Y. W., Desapriya, E., Chan, H. & R Brubacher, J. Residual blood THC levels in frequent cannabis users after over four hours of abstinence: a systematic review. Drug Alcohol. Depend. 216, 108177 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 204.

    Arkell, T. R., Spindle, T. R., Kevin, R. C., Vandrey, R. & McGregor, I. S. The failings of per se limits to detect cannabis-induced driving impairment: results from a simulated driving study. Traffic Inj. Prev. 22, 102–107 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 205.

    Pabon, E. & de Wit, H. Developing a phone-based measure of impairment after acute oral Δ9-tetrahydrocannabinol. J. Psychopharmacol. 33, 1160–1169 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 206.

    Ramaekers, J. G., Robbe, H. W. & O’Hanlon, J. F. Marijuana, alcohol and actual driving performance. Hum. Psychopharmacol. 15, 551–558 (2000).

    PubMed 
    Article 

    Google Scholar 

  • 207.

    Bosker, W. M. et al. Medicinal Δ9-tetrahydrocannabinol (dronabinol) impairs on-the-road driving performance of occasional and heavy cannabis users but is not detected in standard field sobriety tests. Addiction 107, 1837–1844 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 208.

    Hartman, R. L. et al. Cannabis effects on driving lateral control with and without alcohol. Drug Alcohol. Depend. 154, 25–37 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 209.

    Stuster, J. & Burns, M. Validation of the Standardized Field Sobriety Test Battery at BACs Below 0.10 Percent DOT-HS-808-839 (US Department of Transportation, National Highway Traffic Safety Administration, 1998).

  • 210.

    Downey, L. A. et al. Detecting impairment associated with cannabis with and without alcohol on the standardized field sobriety tests. Psychopharmacology 224, 581–589 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 211.

    MacCallum, C. A. & Russo, E. B. Practical considerations in medical cannabis administration and dosing. Eur. J. Intern. Med. 49, 12–19 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 212.

    Patel, S., Khan, S., M, S. & Hamid, P. The association between cannabis use and schizophrenia: causative or curative? A systematic review. Cureus 12, e9309 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 213.

    Ortiz-Medina, M. B. et al. Cannabis consumption and psychosis or schizophrenia development. Int. J. Soc. Psychiatry 64, 690–704 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 214.

    Carliner, H., Brown, Q. L., Sarvet, A. L. & Hasin, D. S. Cannabis use, attitudes, and legal status in the U.S.: a review. Prev. Med. 104, 13–23 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 215.

    Menetrey, A. et al. Assessment of driving capability through the use of clinical and psychomotor tests in relation to blood cannabinoids levels following oral administration of 20 mg dronabinol or of a cannabis decoction made with 20 or 60 mg Δ9-THC. J. Anal. Toxicol. 29, 327–338 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 216.

    Albayram, O. et al. Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging. Proc. Natl Acad. Sci. USA 108, 11256–11261 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 217.

    Marsicano, G. & Lutz, B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 11, 4213–4225 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 218.

    Urfer, S., Morton, J., Beall, V., Feldmann, J. & Gunesch, J. Analysis of Δ9-tetrahydrocannabinol driving under the influence of drugs cases in Colorado from January 2011 to February 2014. J. Anal. Toxicol. 38, 575–581 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 219.

    Hall, W. & Lynskey, M. Assessing the public health impacts of legalizing recreational cannabis use: the US experience. World Psychiatry 19, 179–186 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 220.

    World Health Organization. ICD-11 International Classification of Diseases for Mortality and Morbidity Statistics, 11th Revision (WHO, 2019).

  • 221.

    American Psychiatric Publishing. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Publishing, 2013).

  • 222.

    Gabrys, R. Clearing the Smoke on Cannabis. Edible Cannabis Products, Cannabis Extracts and Cannabis Topicals Report No. ISBN 978-1-77178-639-3 1-16 (Canadian Center on Substance Abuse and Addiction, 2020).

  • 223.

    EMCDDA. Perspectives on drugs: synthetic cannabinoids in Europe. (EMCDDA, 2013).

  • 224.

    Tsang, C. C. & Giudice, M. G. Nabilone for the management of pain. Pharmacotherapy 36, 273–286 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 225.

    Badowski, M. E. & Perez, S. E. Clinical utility of dronabinol in the treatment of weight loss associated with HIV and AIDS. HIV AIDS 8, 37–45 (2016).

    CAS 

    Google Scholar 

  • 226.

    Wade, D. T., Collin, C., Stott, C. & Duncombe, P. Meta-analysis of the efficacy and safety of Sativex (nabiximols), on spasticity in people with multiple sclerosis. Mult. Scler. 16, 707–714 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 227.

    Podda, G. & Constantinescu, C. S. Nabiximols in the treatment of spasticity, pain and urinary symptoms due to multiple sclerosis. Expert Opin. Biol. Ther. 12, 1517–1531 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 228.

    Jaklevic, M. C. CBD drug is approved for a third form of epilepsy. JAMA 324, 1026 (2020).

    PubMed 

    Google Scholar 



  • Source link

    Subscribe
    Notify of
    guest

    0 Comments
    Oldest
    Newest Most Voted
    Inline Feedbacks
    View all comments

    Read more

    Search more

    Latest News