Baba, T. et al. Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, [corrected] reflecting the ancestral genome of the human-pathogenic staphylococci. J. Bacteriol. 191, 1180–1190, doi: 10.1128/JB.01058-08 (2009).
Google Scholar
Kloos, W. E. et al. Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipericus sp. nov., and Macrococcus bovicus sp. no. and Macrococcus carouselicus sp. nov. Int. J. Syst. Bacteriol. 48 Pt 3, 859–877, doi: 10.1099/00207713-48-3-859 (1998).
Google Scholar
Mannerová, S. et al. Macrococcus brunensis sp. nov., Macrococcus hajekii sp. nov. and Macrococcus lamae sp. nov., from the skin of llamas. Int. J. of Syst. Evol. Microbiol. 53, 1647–1654, doi: 10.1099/ijs.0.02683-0 (2003).
Google Scholar
Gobeli Brawand, S. et al. Macrococcus canis sp. nov., a skin bacterium associated with infections in dogs. Int. J. of Syst. Evol. Microbiol. Epub ahead of print, doi: 10.1099/ijsem.0.001673 (2016).
Giannino, M. L., Marzotto, M., Dellaglio, F. & Feligini, M. Study of microbial diversity in raw milk and fresh curd used for Fontina cheese production by culture-independent methods. Int. J. Food Microbiol. 130, 188–195, doi: 10.1016/j.ijfoodmicro.2009.01.022 (2009).
Google Scholar
Fontana, C., Cappa, F., Rebecchi, A. & Cocconcelli, P. S. Surface microbiota analysis of Taleggio, Gorgonzola, Casera, Scimudin and Formaggio di Fossa Italian cheeses. Int. J. Food Microbiol. 138, 205–211, doi: 10.1016/j.ijfoodmicro.2010.01.017 (2010).
Google Scholar
Zhong, Z. et al. Bacterial microbiota compositions of naturally fermented milk are shaped by both geographic origin and sample type. J. Dairy Sci. 99, 7832–7841, doi: 10.3168/jds.2015-10825 (2016).
Google Scholar
Tsubakishita, S., Kuwahara-Arai, K., Baba, T. & Hiramatsu, K. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus . Antimicrob. Agents Chemother. 54, 1469–1475, doi: 10.1128/AAC.00575-09 (2010).
Google Scholar
Cicconi-Hogan, K. M. et al. Short communication: Prevalence of methicillin resistance in coagulase-negative staphylococci and Staphylococcus aureus isolated from bulk milk on organic and conventional dairy farms in the United States. J. Dairy Sci. 97, 2959–2964, doi: 10.3168/jds.2013-7523 (2014).
Google Scholar
Micheel, V. et al. Screening agars for MRSA: evaluation of a stepwise diagnostic approach with two different selective agars for the screening for methicillin-resistant Staphylococcus aureus (MRSA). Mil. Med. Res. 2, 18, doi: 10.1186/s40779-015-0046-1 (2015).
Google Scholar
Rubin, J. E. & Chirino-Trejo, M. Inducibly cefoxitin-resistant Macrococcus-like organism falsely identified as methicillin-resistant Staphylococcus aureus on CHROMagar with oxacillin. J. Clin. Microbiol. 48, 3037–3038, doi: 10.1128/JCM.00519-10 (2010).
Google Scholar
Gómez-Sanz, E., Schwendener, S., Thomann, A., Gobeli Brawand, S. & Perreten, V. First staphylococcal cassette chromosome mec containing a mecB-carrying gene complex independent of transposon Tn6045 in a Macrococcus caseolyticus isolate from a canine infection. Antimicrob. Agents Chemother. 59, 4577–4583, doi: 10.1128/AAC.05064-14 (2015).
Google Scholar
Ito, T. et al. Guidelines for reporting novel mecA gene homologues. Antimicrob. Agents Chemother. 56, 4997–4999 (2012).
Google Scholar
Hiramatsu, K. et al. Genomic basis for methicillin resistance in Staphylococcus aureus . Infect. Chemother. 45, 117–136, doi: 10.3947/ic.2013.45.2.117 (2013).
Google Scholar
Pinho, M. G., de Lencastre, H. & Tomasz, A. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc. Natl. Acad. Sci. USA 98, 10886–10891, doi: 10.1073/pnas.191260798 (2001).
Google Scholar
CLSI. The Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 9th ed., vol. 32, no. 2. Approved standard M07-A9. (Clinical and Laboratory Standards Institute, 2012).
Peacock, S. J. & Paterson, G. K. Mechanisms of methicillin resistance in Staphylococcus aureus . Annu. Rev. Biochem. 84, 577–601, doi: 10.1146/annurev-biochem-060614-034516 (2015).
Google Scholar
Zhang, H. Z., Hackbarth, C. J., Chansky, K. M. & Chambers, H. F. A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science 291, 1962–1965, doi: 10.1126/science.1055144 (2001).
Google Scholar
Ryffel, C., Kayser, F. H. & Berger-Bächi, B. Correlation between regulation of mecA transcription and expression of methicillin resistance in staphylococci. Antimicrob. Agents Chemother. 36, 25–31 (1992).
Google Scholar
McKinney, T. K., Sharma, V. K., Craig, W. A. & Archer, G. L. Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and β-lactamase regulators. J. Bacteriol. 183, 6862–6868, doi: 10.1128/JB.183.23.6862-6868.2001 (2001).
Google Scholar
Arêde, P., Ministro, J. & Oliveira, D. C. Redefining the role of the β-lactamase locus in methicillin-resistant Staphylococcus aureus: β-lactamase regulators disrupt the MecI-mediated strong repression on mecA and optimize the phenotypic expression of resistance in strains with constitutive mecA expression. Antimicrob. Agents Chemother. 57, 3037–3045, doi: 10.1128/AAC.02621-12 (2013).
Google Scholar
Hackbarth, C. J. & Chambers, H. F. blaI and blaR1 regulate β-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus . Antimicrob. Agents Chemother. 37, 1144–1149 (1993).
Google Scholar
Katayama, Y., Ito, T. & Hiramatsu, K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus . Antimicrob. Agents Chemother. 44, 1549–1555 (2000).
Google Scholar
Chambers, H. F. & DeLeo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).
Google Scholar
Shore, A. C. & Coleman, D. C. Staphylococcal cassette chromosome mec: recent advances and new insights. Int. J. Med. Microbiol. 303, 350–359, doi: 10.1016/j.ijmm.2013.02.002 (2013).
Google Scholar
Solovyev, V. & Salamov, A. Automatic annotation of microbial genomes and metagenomic sequences. In Metagenomics and its applications in agriculture, biomedicine and environmental studies (Ed. Li, R. W. ). p., 61–78 (Nova Science Publishers, 2011).
García-Castellanos, R. et al. On the transcriptional regulation of methicillin resistance: MecI repressor in complex with its operator. J. Biol. Chem. 279, 17888–17896, doi: 10.1074/jbc.M313123200 (2004).
Google Scholar
Lewis, R. A. & Dyke, K. G. MecI represses synthesis from the β-lactamase operon of Staphylococcus aureus . J. Antimicrob. Chemother. 45, 139–144 (2000).
Google Scholar
Arêde, P. & Oliveira, D. C. Proteolysis of mecA repressor is essential for expression of methicillin resistance by Staphylococcus aureus . Antimicrob. Agents Chemother. 57, 2001–2002, doi: 10.1128/AAC.02510-12 (2013).
Google Scholar
Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A. & Charlier, P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 234–258, doi: 10.1111/j.1574-6976.2008.00105.x (2008).
Google Scholar
Lovering, A. L. et al. Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J. Biol. Chem. 287, 32096–32102, doi: 10.1074/jbc.M112.355644 (2012).
Google Scholar
Otero, L. H. et al. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc. Natl. Acad. Sci. USA 110, 16808–16813, doi: 10.1073/pnas.1300118110 (2013).
Google Scholar
Schwendener, S. & Perreten, V. New shuttle vector-based expression system to generate polyhistidine-tagged fusion proteins in Staphylococcus aureus and Escherichia coli . Appl. Environ Microbiol. 81, 3243–3254, doi: 10.1128/AEM.03803-14 (2015).
Google Scholar
Katayama, Y., Zhang, H. Z., Hong, D. & Chambers, H. F. Jumping the barrier to β-lactam resistance in Staphylococcus aureus . J. Bacteriol. 185, 5465–5472 (2003).
Google Scholar
EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. http://www.eucast.org Version 6.0 (2016).
Arêde, P., Milheiriço, C., de Lencastre, H. & Oliveira, D. C. The anti-repressor MecR2 promotes the proteolysis of the mecA repressor and enables optimal expression of β-lactam resistance in MRSA. PLoS Pathog. 8, e1002816, doi: 10.1371/journal.ppat.1002816 (2012).
Google Scholar
Novick, R. P., Christie, G. E. & Penadés, J. R. The phage-related chromosomal islands of Gram-positive bacteria. Nat. Rev. Microbiol. 8, 541–551, doi: 10.1038/nrmicro2393 (2010).
Google Scholar
Chen, H. J. et al. New structure of phage-related islands carrying fusB and a virulence gene in fusidic acid-resistant Staphylococcus epidermidis . Antimicrob. Agents Chemother. 57, 5737–5739, doi: 10.1128/AAC.01433-13 (2013).
Google Scholar
Xu, G. L., Kapfer, W., Walter, J. & Trautner, T. A. BsuBI–an isospecific restriction and modification system of PstI: characterization of the BsuBI genes and enzymes. Nucleic Acids Res. 20, 6517–6523 (1992).
Google Scholar
Kramer, N., Hahn, J. & Dubnau, D. Multiple interactions among the competence proteins of Bacillus subtilis . Mol. Microbiol. 65, 454–464, doi: 10.1111/j.1365-2958.2007.05799.x (2007).
Google Scholar
Yadav, T. et al. Bacillus subtilis DprA recruits RecA onto single-stranded DNA and mediates annealing of complementary strands coated by SsbB and SsbA. J. Biol. Chem. 288, 22437–22450, doi: 10.1074/jbc.M113.478347 (2013).
Google Scholar
Zimmerly, S. & Wu, L. An unexplored diversity of reverse transcriptases in bacteria. Microbiol. Spectr. 3, MDNA3-0058-2014, doi: 10.1128/microbiolspec.MDNA3-0058-2014 (2015).
Esposito, D. & Scocca, J. J. The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res. 25, 3605–3614 (1997).
Google Scholar
Goerke, C., Köller, J. & Wolz, C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus . Antimicrob. Agents Chemother. 50, 171–177, doi: 10.1128/AAC.50.1.171-177.2006 (2006).
Google Scholar
Fornelos, N., Browning, D. F. & Butala, M. The use and abuse of LexA by mobile genetic elements. Trends Microbiol. 24, 391–401, doi: 10.1016/j.tim.2016.02.009 (2016).
Google Scholar
Ito, T. et al. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC . Antimicrob. Agents Chemother. 48, 2637–2651 (2004).
Google Scholar
Sivaraman, K., Venkataraman, N., Tsai, J., Dewell, S. & Cole, A. M. Genome sequencing and analysis reveals possible determinants of Staphylococcus aureus nasal carriage. BMC Genomics 9, 433, doi: 10.1186/1471-2164-9-433 (2008).
Google Scholar
Kreiswirth, B. N. et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712 (1983).
Google Scholar
Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644, doi: 10.1093/jac/dks261 (2012).
Google Scholar
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
Google Scholar
Sigrist, C. J. et al. New and continuing developments at PROSITE. Nucleic Acids Res. 41, D344–347, doi: 10.1093/nar/gks1067 (2013).
Google Scholar
Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–226, doi: 10.1093/nar/gku1221 (2015).
Google Scholar
Schenk, S. & Laddaga, R. A. Improved method for electroporation of Staphylococcus aureus . FEMS Microbiol. Lett. 73, 133–138 (1992).
Google Scholar
Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular cloning. A laboratory manual. 2nd ed, (Cold Spring Harbor Laboratory Press, 1989).
Vaudaux, P. et al. Intensive therapy with ceftobiprole medocaril of experimental foreign-body infection by methicillin-resistant Staphylococcus aureus . Antimicrob. Agents Chemother. 49, 3789–3793, doi: 10.1128/AAC.49.9.3789-3793.2005 (2005).
Google Scholar
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874, doi: 10.1093/molbev/msw054 (2016).
Google Scholar
Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010 (2011).
Google Scholar