Saturday, May 4, 2024
0

Validation of a nicotine vapor self-administration model in rats with relevance to electronic cigarette use

Share


  • 1.

    Services UDOHAH. E-cigarette use among youth and young adults: a report of the surgeon general. Atlanta, GA: US Department of Health and Human Services; 2016.

    Google Scholar 

  • 2.

    Luxton NA, Shih P, Rahman MA, Electronic cigarettes and smoking cessation in the perioperative period of cardiothoracic surgery: views of australian clinicians. Int J Environ Res Public Health. 2018;15:11.

    Google Scholar 

  • 3.

    Fong GT, Elton-Marshall T, Driezen P, Kaufman AR, Cummings KM, Choi K. et al. U.S. adult perceptions of the harmfulness of tobacco products: descriptive findings from the 2013–14 baseline wave 1 of the path study. Addict Behav. 2019;91:180–7.

    PubMed 

    Google Scholar 

  • 4.

    Mathur A, Dempsey OJ. Electronic cigarettes: a brief update. J R Coll Physicians Edinb. 2018;48:346–51.

    CAS 

    Google Scholar 

  • 5.

    Mead EL, Duffy V, Oncken C, Litt MD. E-cigarette palatability in smokers as a function of flavorings, nicotine content and propylthiouracil (PROP) taster phenotype. Addict Behav. 2019;91:37–44.

    PubMed 

    Google Scholar 

  • 6.

    Takahashi Y, Kanemaru Y, Fukushima T, Eguchi K, Yoshida S, Miller-Holt J. et al. Chemical analysis and in vitro toxicological evaluation of aerosol from a novel tobacco vapor product: a comparison with cigarette smoke. Regul Toxicol Pharm. 2018;92:94–103.

    CAS 

    Google Scholar 

  • 7.

    Taylor M, Carr T, Oke O, Jaunky T, Breheny D, Lowe F. et al. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke. Toxicol Mech Methods. 2016;26:465–76.

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Sifat AE, Vaidya B, Kaisar MA, Cucullo L, Abbruscato TJ. Nicotine and electronic cigarette (E-Cig) exposure decreases brain glucose utilization in ischemic stroke. J Neurochem. 2018;147:204–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Shen Y, Wolkowicz MJ, Kotova T, Fan L, Timko MP. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells. Sci Rep. 2016;6:23984.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Rankin GD, Wingfors H, Uski O, Hedman L, Ekstrand-Hammarstrom B, Bosson J. et al. The toxic potential of a fourth-generation E-cigarette on human lung cell lines and tissue explants. J Appl Toxicol. 2019;39:1143–54.

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Zagoriti Z, El Mubarak MA, Farsalinos K, Topouzis S. Effects of exposure to tobacco cigarette, electronic cigarette and heated tobacco product on adipocyte survival and differentiation in vitro. Toxics. 2020;8:9.

    CAS 
    PubMed Central 

    Google Scholar 

  • 12.

    Welz C, Canis M, Schwenk-Zieger S, Becker S, Stucke V, Ihler F. et al. Cytotoxic and genotoxic effects of electronic cigarette liquids on human mucosal tissue cultures of the oropharynx. J Environ Pathol Toxicol Oncol. 2016;35:343–54.

    PubMed 

    Google Scholar 

  • 13.

    Cohen A, George O. Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use, and compulsive smoking. Front Psychiatry. 2013;4:41.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Erku DA, Gartner CE, Do JT, Morphett K, Steadman KJ. Electronic nicotine delivery systems (e-cigarettes) as a smoking cessation aid: a survey among pharmacy staff in Queensland, Australia. Addict Behav. 2019;91:227–33.

    PubMed 

    Google Scholar 

  • 15.

    Filippidis FT, Laverty AA, Mons U, Jimenez-Ruiz C, Vardavas CI. Changes in smoking cessation assistance in the European Union between 2012 and 2017: pharmacotherapy versus counselling versus e-cigarettes. Tob Control. 2019;28:95–100.

    PubMed 

    Google Scholar 

  • 16.

    Donny EC, Caggiula AR, Mielke MM, Jacobs KS, Rose C, Sved AF. Acquisition of nicotine self-administration in rats: the effects of dose, feeding schedule, and drug contingency. Psychopharmacology. 1998;136:83–90.

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Belluzzi JD, Wang R, Leslie FM. Acetaldehyde enhances acquisition of nicotine self-administration in adolescent rats. Neuropsychopharmacology. 2005;30:705–12.

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Jensen RP, Luo W, Pankow JF, Strongin RM, Peyton DH. Hidden formaldehyde in e-cigarette aerosols. N Engl J Med. 2015;372:392–4.

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    El-Hellani A, Al-Moussawi S, El-Hage R, Talih S, Salman R, Shihadeh A. et al. Carbon monoxide and small hydrocarbon emissions from sub-ohm electronic cigarettes. Chem Res Toxicol. 2019;32:312–7.

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Kallupi M, George O. Nicotine vapor method to induce nicotine dependence in rodents. Curr Protoc Neurosci. 2017;80:84141–484110.

  • 21.

    Gilpin NW, Whitaker AM, Baynes B, Abdel AY, Weil MT, George O. Nicotine vapor inhalation escalates nicotine self-administration. Addict Biol. 2014;19:587–92.

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Malin DH, Lake JR, Carter VA, Cunningham JS, Hebert KM, Conrad DL. et al. The nicotinic antagonist mecamylamine precipitates nicotine abstinence syndrome in the rat. Psychopharmacology. 1994;115:180–4.

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Vendruscolo JCM, Tunstall BJ, Carmack SA, Schmeichel BE, Lowery-Gionta EG, Cole M. et al. Compulsive-like sufentanil vapor self-administration in rats. Neuropsychopharmacology. 2018;43:801–9.

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Hiler M, Breland A, Spindle T, Maloney S, Lipato T, Karaoghlanian N. et al. Electronic cigarette user plasma nicotine concentration, puff topography, heart rate, and subjective effects: Influence of liquid nicotine concentration and user experience. Exp Clin Psychopharmacol. 2017;25:380–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Vansickel AR, Edmiston JS, Liang Q, Duhon C, Connell C, Bennett D. et al. Characterization of puff topography of a prototype electronic cigarette in adult exclusive cigarette smokers and adult exclusive electronic cigarette users. Regul Toxicol Pharm. 2018;98:250–6.

    Google Scholar 

  • 26.

    Russell MA, Feyerabend C, Cole PV. Plasma nicotine levels after cigarette smoking and chewing nicotine gum. Br Med J. 1976;1:1043–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Farsalinos KE, Spyrou A, Tsimopoulou K, Stefopoulos C, Romagna G, Voudris V. Nicotine absorption from electronic cigarette use: comparison between first and new-generation devices. Sci Rep. 2014;4:4133.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Malin DH, Lake JR, Newlin-Maultsby P, Roberts LK, Lanier JG, Carter VA. et al. Rodent model of nicotine abstinence syndrome. Pharm Biochem Behav. 1992;43:779–84.

    CAS 

    Google Scholar 

  • 29.

    George O, Grieder TE, Cole M, Koob GF. Exposure to chronic intermittent nicotine vapor induces nicotine dependence. Pharm Biochem Behav. 2010;96:104–107.

    CAS 

    Google Scholar 

  • 30.

    Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14:149–67.

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Elliott BM, Faraday MM, Grunberg NE. Effects of nicotine on heart dimensions and blood volume in male and female rats. Nicotine Tob Res. 2003;5:341–8.

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Gourlay SG, Benowitz NL. Arteriovenous differences in plasma concentration of nicotine and catecholamines and related cardiovascular effects after smoking, nicotine nasal spray, and intravenous nicotine. Clin Pharmacol Therapeutics. 1997;62:453–63.

    CAS 

    Google Scholar 

  • 33.

    Shoaib M, Stolerman IP. Plasma nicotine and cotinine levels following intravenous nicotine self-administration in rats. Psychopharmacology. 1999;143:318–21.

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Miller RP, Rotenberg KS, Adir J. Effect of dose on the pharmacokinetics of intravenous nicotine in the rat. Drug Metab Dispos. 1977;5:436–43.

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Cohen A, Treweek J, Edwards S, Leao RM, Schulteis G, Koob GF. et al. Extended access to nicotine leads to a CRF1 receptor dependent increase in anxiety-like behavior and hyperalgesia in rats. Addict Biol. 2015;20:56–68.

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Valentine JD, Hokanson JS, Matta SG, Sharp BM. Self-administration in rats allowed unlimited access to nicotine. Psychopharmacology. 1997;133:300–4.

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Donny EC, Caggiula AR, Rowell PP, Gharib MA, Maldovan V, Booth S. et al. Nicotine self-administration in rats: estrous cycle effects, sex differences and nicotinic receptor binding. Psychopharmacology. 2000;151:392–405.

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Rosenzweig-Lipson S, Thomas S, Barrett JE. Attenuation of the locomotor activating effects of D-amphetamine, cocaine, and scopolamine by potassium channel modulators. Prog Neuropsychopharmacol Biol Psychiatry. 1997;21:853–72.

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Corrigall WA, Coen KM. Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology. 1989;99:473–8.

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Fudala PJ, Iwamoto ET. Further studies on nicotine-induced conditioned place preference in the rat. Pharm Biochem Behav. 1986;25:1041–9.

    CAS 

    Google Scholar 

  • 41.

    Morean ME, Kong G, Cavallo DA, Camenga DR, Krishnan-Sarin S. Nicotine concentration of e-cigarettes used by adolescents. Drug Alcohol Depend. 2016;167:224–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Henningfield JE, Goldberg SR. Nicotine as a reinforcer in human subjects and laboratory animals. Pharm Biochem Behav. 1983;19:989–92.

    CAS 

    Google Scholar 

  • 43.

    George O, Lloyd A, Carroll FI, Damaj MI, Koob GF. Varenicline blocks nicotine intake in rats with extended access to nicotine self-administration. Psychopharmacology. 2011;213:715–22.

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J. et al. Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem. 2005;48:3474–7.

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Baiamonte BA, Valenza M, Roltsch EA, Whitaker AM, Baynes BB, Sabino V. et al. Nicotine dependence produces hyperalgesia: role of corticotropin-releasing factor-1 receptors (CRF1Rs) in the central amygdala (CeA). Neuropharmacology. 2014;77:217–23.

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Kallupi M, de Guglielmo G, Larrosa E, George O. Exposure to passive nicotine vapor in male adolescent rats produces a withdrawal-like state and facilitates nicotine self-administration during adulthood. Eur Neuropsychopharmacol. 2019;29:1227–34.

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Damaj MI, Kao W, Martin BR. Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. J Pharmacol Exp therapeutics. 2003;307:526–34.

    CAS 

    Google Scholar 

  • 48.

    Paterson NE, Markou A. Prolonged nicotine dependence associated with extended access to nicotine self-administration in rats. Psychopharmacology. 2004;173:64–72.

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Hughes JR, Peters EN, Callas PW, Peasley-Miklus C, Oga E, Etter JF. et al. Withdrawal symptoms from e-cigarette abstinence among former smokers: a pre-post clinical trial. Nicotine Tob Res. 2019;22:734–9.

    PubMed Central 

    Google Scholar 

  • 50.

    Bailey SA, Zidell RH, Perry RW. Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicol Pathol. 2004;32:448–66.

    PubMed 

    Google Scholar 

  • 51.

    Michael B, Yano B, Sellers RS, Perry R, Morton D, Roome N. et al. Evaluation of organ weights for rodent and non-rodent toxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicol Pathol. 2007;35:742–50.

    PubMed 

    Google Scholar 

  • 52.

    Yu C, Zhang Z, Liu Y, Zong Y, Chen Y, Du X. et al. Toxicity of smokeless tobacco extract after 184-day repeated oral administration in rats. Int J Environ Res Public Health. 2016;13:281.

    PubMed Central 

    Google Scholar 

  • 53.

    Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43:1731–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Garcia-Arcos I, Geraghty P, Baumlin N, Campos M, Dabo AJ, Jundi B, et al. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner. Thorax. 2016;71:1119–29.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Anderson AE Jr., Hernandez JA, Eckert P, Foraker AG. Emphysema in lung macrosections correlated with smoking habits. Science. 1964;144:1025–6.

    PubMed 

    Google Scholar 

  • 56.

    Branchfield K, Nantie L, Verheyden JM, Sui P, Wienhold MD, Sun X. Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science. 2016;351:707–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Schweitzer KS, Chen SX, Law S, Van Demark M, Poirier C, Justice MJ. et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol. 2015;309:L175–87.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    McConnell R, Barrington-Trimis JL, Wang K, Urman R, Hong H, Unger J. et al. Electronic cigarette use and respiratory symptoms in adolescents. Am J Respir Crit Care Med. 2017;195:1043–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Ledford H. Scientists chase cause of mysterious vaping illness as death toll rises. Nature. 2019;574:303–4.

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Leung JM, Tiew PY, Mac Aogain M, Budden KF, Yong VF, Thomas SS. et al. Pethe K, Hansbro PM, Chotirmall SH. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology. 2017;22:634–50.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Sussan TE, Gajghate S, Thimmulappa RK, Ma J, Kim JH, Sudini K. et al. Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PLoS ONE. 2015;10:e0116861.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Marks MJ, Burch JB, Collins AC. Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp therapeutics. 1983;226:817–25.

    CAS 

    Google Scholar 

  • 63.

    Schwartz RD, Kellar KJ. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science. 1983;220:214–6.

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Benwell ME, Balfour DJ, Anderson JM. Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem. 1988;50:1243–7.

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Marks MJ, Stitzel JA, Collins AC. Time course study of the effects of chronic nicotine infusion on drug response and brain receptors. J Pharmacol Exp therapeutics. 1985;235:619–28.

    CAS 

    Google Scholar 

  • 66.

    Markou A. Review. Neurobiology of nicotine dependence. Philos Trans R Soc Lond B Biol Sci. 2008;363:3159–68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Marks MJ, Pauly JR, Gross SD, Deneris ES, Hermans-Borgmeyer I, Heinemann SF. et al. Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci. 1992;12:2765–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Chen H, Parker SL, Matta SG, Sharp BM. Gestational nicotine exposure reduces nicotinic cholinergic receptor (nAChR) expression in dopaminergic brain regions of adolescent rats. Eur J Neurosci. 2005;22:380–8.

    PubMed 

    Google Scholar 

  • 69.

    Picciotto MR, Kenny PJ. Molecular mechanisms underlying behaviors related to nicotine addiction. Cold Spring Harb Perspect Med. 2013;3:a012112.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Improgo MR, Scofield MD, Tapper AR, Gardner PD. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: dual role in nicotine addiction and lung cancer. Prog Neurobiol. 2010;92:212–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Freels TG, Baxter-Potter LN, Lugo JM, Glodosky NC, Wright HR, Baglot SL. et al. Vaporized cannabis extracts have reinforcing properties and support conditioned drug-seeking behavior in rats. J Neurosci. 2020;40:1897–908.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Subscribe
    Notify of
    guest

    0 Comments
    Inline Feedbacks
    View all comments

    Read more

    Search more

    Latest News