Li, N. et al. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J. Allergy Clin. Immun. 138, 386–396 (2016).
Google Scholar
Seigneur, C. Air Pollution (Cambridge University Press, 2019).
Hofman, J. et al. Ultrafine particles in four European urban environments: results from a new continuous long-term monitoring network. Atmos. Environ. 136, 68–81 (2016).
Google Scholar
Miller, M. R. et al. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11, 4542–4552 (2017).
Google Scholar
Terzano, C., Di Stefano, F., Conti, V., Graziani, E. & Petroianni, A. Air pollution ultrafine particles: toxicity beyond the lung. Eur. Rev. Med. Pharm. 14, 809–821 (2010).
Google Scholar
Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Persp. 113, 823–839 (2005).
Google Scholar
Qi, Z. et al. Particulate matter emission characteristics and removal efficiencies of a low-low temperature electrostatic precipitator. Energ. Fuel. 31, 1741–1746 (2017).
Google Scholar
Feng, Y., Li, Y. & Cui, L. Critical review of condensable particulate matter. Fuel 224, 801–813 (2018).
Google Scholar
Yang, H.-H., Lee, K.-T., Hsieh, Y.-S., Luo, S.-W. & Li, M.-S. Filterable and condensable fine particulate emissions from stationary sources. Aerosol Air Qual. Res. 14, 2010–2016 (2014).
Google Scholar
Frank, B., Schuster, M. E., Schlogl, R. & Su, D. S. Emission of highly activated soot particulate–the other side of the coin with modern diesel engines. Angew. Chem. Int. Ed. 52, 2673–2677 (2013).
Google Scholar
Junkermann, W., Vogel, B. & Sutton, M. A. The climate penalty for clean fossil fuel combustion. Atmos. Chem. Phys. 11, 12917–12924 (2011).
Google Scholar
Fan, J. et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 359, 411–418 (2018).
Google Scholar
Rosenfeld, D., Clavner, M. & Nirel, R. Pollution and dust aerosols modulating tropical cyclones intensities. Atmos. Res. 102, 66–76 (2011).
Google Scholar
Whitby, K. T. The physical characteristics of sulfur aerosols. Atmos. Environ. 12, 135–159 (1978).
Google Scholar
Spurny, K. R. On the physics, chemistry and toxicology of ultrafine anthropogenic, atmospheric aerosols (UAAA): new advances. Toxicol. Lett. 96–97, 253–261 (1998).
Google Scholar
Ehn, M. et al. A large source of low-volatility secondary organic aerosol. Nature 506, 476–479 (2014).
Google Scholar
McMurry, P. H., Shepherd, M. F. & Vickery, J. S. Particulate Matter Science for Policy Makers: a NARSTO Assessment (Cambridge University Press, 2004).
Kulmala, M. et al. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143–176 (2004).
Google Scholar
Zhao, Y., Wang, F. & Zhao, J. Size-resolved ultrafine particle deposition and brownian coagulation from gasoline vehicle exhaust in an environmental test chamber. Environ. Sci. Technol. 49, 12153–12160 (2015).
Google Scholar
Manigrasso, M. & Avino, P. Fast evolution of urban ultrafine particles: Implications for deposition doses in the human respiratory system. Atmos. Environ. 51, 116–123 (2012).
Google Scholar
Zhang, L. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ. 35, 549–560 (2001).
Google Scholar
Manigrasso, M., Stabile, L., Avino, P. & Buonanno, G. Influence of measurement frequency on the evaluation of short-term dose of sub-micrometric particles during indoor and outdoor generation events. Atmos. Environ. 67, 130–142 (2013).
Google Scholar
Pronk, A., Coble, J. & Stewart, P. A. Occupational exposure to diesel engine exhaust: a literature review. J. Expo. Sci. Env. Epid. 19, 443–457 (2009).
Google Scholar
Wang, Y. G., Hopke, P. K., Chalupa, D. C. & Utell, M. J. Long-term study of urban ultrafine particles and other pollutants. Atmos. Environ. 45, 7672–7680 (2011).
Google Scholar
Aas, W. et al. Lessons learnt from the first EMEP intensive measurement periods. Atmos. Chem. Phys. 12, 8073–8094 (2012).
Google Scholar
Goodarzi, F. The rates of emissions of fine particles from some Canadian coal-fired power plants. Fuel 85, 425–433 (2006).
Google Scholar
Tsukada, M. et al. Emission potential of condensable suspended particulate matter from flue gas of solid waste combustion. Powder Technol. 180, 140–144 (2008).
Google Scholar
U.S. Environmental Protection Agency. 2017 National Emissions Inventory, August 2019 Point Release, Technical Support Document (U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 2019).
European Environment Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019, Technical Guidance To Prepare National Emission Inventories (Publications Office of the European Union, Luxembourg, 2019).
Lei, Y., Zhang, Q., He, K. B. & Streets, D. G. Primary anthropogenic aerosol emission trends for China, 1990–2005. Atmos. Chem. Phys. 11, 931–954 (2011).
Google Scholar
Choi, D. S. et al. Study on the contribution ratios of particulate matter emissions in differential provinces concerning condensable particulate matter. Energ. Environ. 30, 1206–1218 (2019).
Google Scholar
Morino, Y. et al. Contributions of condensable particulate matter to atmospheric organic aerosol over Japan. Environ. Sci. Technol. 52, 8456–8466 (2018).
Google Scholar
Denier van der Gon, H. A. C. et al. Particulate emissions from residential wood combustion in Europe – revised estimates and an evaluation. Atmos. Chem. Phys. 15, 6503–6519 (2015).
Google Scholar
Petzold, A. et al. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 13, 8365–8379 (2013).
Google Scholar
Liu, X. F., Peng, L., Bai, H. L. & Mu, L. Characteristics of organic carbon and elemental carbon in the ambient air of coking plant. Aerosol Air Qual. Res. 15, 1485–1493 (2015).
Google Scholar
Cao, J. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmos. Environ. 37, 1451–1460 (2003).
Google Scholar
Watson, J. G., Chow, J. C. & Chen, L. W. A. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 5, 65–102 (2005).
Google Scholar
Aitken, J. On the number of dust particles in the atmosphere. Nature 37, 428–430 (1888).
Pollak, L. W. & Metnieks, A. L. New calibration of photo-electric nucleus counters. Geofisica Pura e Applicata 43, 285–301 (1959).
Grebot, B. et al. Industrial Emissions Of Nanomaterials And Ultrafine Particles: Final Report (AMEC Environment & Infrastructure UK Limited, London, 2011).
Harrison, R. M., Beddows, D. C. & Dall’Osto, M. PMF analysis of wide-range particle size spectra collected on a major highway. Environ. Sci. Technol. 45, 5522–5528 (2011).
Google Scholar
Venecek, M. A., Yu, X. & Kleeman, M. J. Predicted ultrafine particulate matter source contribution across the continental United States during summertime air pollution events. Atmos. Chem. Phys. 19, 9399–9412 (2019).
Google Scholar
Argyropoulos, G. et al. Concentration levels and source apportionment of ultrafine particles in road microenvironments. Atmos. Environ. 129, 68–78 (2016).
Google Scholar
Anenberg, S. C., Miller, J., Henze, D. K., Minjares, R. & Achakulwisut, P. The global burden of transportation tailpipe emissions on air pollution-related mortality in 2010 and 2015. Environ. Res. Lett. 14, https://doi.org/10.1088/1748-9326/ab35fc (2019).
Ris, C. U.S. EPA health assessment for diesel engine exhaust: a review. Inhal. Toxicol. 19, 229–239 (2007).
Google Scholar
Jones, A. M., Harrison, R. M., Barratt, B. & Fuller, G. A large reduction in airborne particle number concentrations at the time of the introduction of “sulphur free” diesel and the London Low Emission Zone. Atmos. Environ. 50, 129–138 (2012).
Google Scholar
Liati, A., Schreiber, D., Arroyo Rojas Dasilva, Y. & Dimopoulos Eggenschwiler, P. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective. Environ. Pollut. 239, 661–669 (2018).
Google Scholar
Ježek, I., Katrašnik, T., Westerdahl, D. & Močnik, G. Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method. Atmos. Chem. Phys. 15, 11011–11026 (2015).
R’Mili, B. et al. Physico-chemical characterization of fine and ultrafine particles emitted during diesel particulate filter active regeneration of Euro5 diesel vehicles. Environ. Sci. Technol. 52, 3312–3319 (2018).
Google Scholar
Arnold, F. et al. First online measurements of sulfuric acid gas in modern heavy-duty diesel engine exhaust: implications for nanoparticle formation. Environ. Sci. Technol. 46, 11227–11234 (2012).
Google Scholar
Burtscher, H. Physical characterization of particulate emissions from diesel engines: a review. J. Aerosol Sci. 36, 896–932 (2005).
Google Scholar
Shrivastava, M., Nguyen, A., Zheng, Z., Wu, H. W. & Jung, H. S. Kinetics of soot oxidation by NO2. Environ. Sci. Technol. 44, 4796–4801 (2010).
Google Scholar
Kittelson, D. B., Watts, W. F. & Johnson, J. P. On-road and laboratory evaluation of combustion aerosols—Part1: summary of diesel engine results. J. Aerosol Sci. 37, 913–930 (2006).
Google Scholar
Choi, S., Oh, K. C. & Lee, C. B. The effects of filter porosity and flow conditions on soot deposition/oxidation and pressure drop in particulate filters. Energy 77, 327–337 (2014).
Google Scholar
Fino, D. & Specchia, V. Open issues in oxidative catalysis for diesel particulate abatement. Powder Technol. 180, 64–73 (2008).
Google Scholar
Giechaskiel, B. et al. Particle number measurements in the European legislation and future JRC activities. Combustion Engines. Combust. Engines 174, 3–16 (2018).
Dwyer, H. et al. Emissions from a diesel car during regeneration of an active diesel particulate filter. J. Aerosol Sci. 41, 541–552 (2010).
Google Scholar
Beatrice, C., Di Iori, S., Guido, C. & Napolitano, P. Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Exp. Therm. Fluid Sci. 39, 45–53 (2012).
Google Scholar
Yamada, H., Inomata, S. & Tanimoto, H. Mechanisms of increased particle and VOC emissions during DPF active regeneration and practical emissions considering regeneration. Environ. Sci. Technol. 51, 2914–2923 (2017).
Google Scholar
Ko, J., Si, W., Jin, D., Myung, C. L. & Park, S. Effect of active regeneration on time-resolved characteristics of gaseous emissions and size-resolved particle emissions from light-duty diesel engine. J. Aerosol Sci. 91, 62–77 (2016).
Google Scholar
Wilson, W. E. et al. General motors sulfate dispersion experiment: summary of EPA measurements. J. Air Pollut. Control Assoc. 27, 46–51 (1977).
Google Scholar
Karthikeyan, S. et al. Nitrogen dioxide and ultrafine particles dominate the biological effects of inhaled diesel exhaust treated by a catalyzed diesel particulate filter. Toxicol. Lett. 135, 437–450 (2013).
Google Scholar
Lucking, A. J. et al. Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation 123, 1721–1728 (2011).
Google Scholar
He, C., Li, J., Ma, Z., Tan, J. & Zhao, L. High NO2/NOx emissions downstream of the catalytic diesel particulate filter: An influencing factor study. J. Environ. Sci. 35, 55–61 (2015).
Holmen, B. A. & Ayala, A. Ultrafine PM emissions from natural gas, oxidation-catalyst diesel, and particle-trap diesel heavy-duty transit buses. Environ. Sci. Technol. 36, 5041–5050 (2002).
Google Scholar
Khalek, I. A., Bougher, T. L., Merritt, P. M. & Zielinska, B. Regulated and unregulated emissions from highway heavy-duty diesel engines complying with U.S. Environmental Protection Agency 2007 emissions standards. J. Air Waste Manag. 61, 427–442 (2011).
Google Scholar
Guan, B., Zhan, R., Lin, H. & Huang, Z. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl. Therm. Eng. 66, 395–414 (2014).
Google Scholar
Karjalainen, P. et al. Reduction of heavy-duty diesel exhaust particle number and mass at low exhaust temperature driving by the DOC and the SCR. SAE Int. J. Fuels Lubr. 5, 1114–1122 (2012).
Google Scholar
Rodríguez, F., Bernard, Y., Dornoff, J. & Mock, P. Recommendations for Post-Euro 6 – Standards for Light-Duty Vehicles in the European Union (International Council on Clean Transportation Europe, Berlin, 2019).
Piock, W., Hoffmann, G., Berndorfer, A., Salemi, P. & Fusshoeller, B. Strategies towards meeting future particulate matter emission requirements in homogeneous gasoline direct injection engines. SAE Int. J. Engines 4, 1455–1468 (2011).
Giechaskiel, B., Joshi, A., Ntziachristos, L. & Dilara, P. European regulatory framework and particulate matter emissions of gasoline light-duty vehicles: a review. Catalysts 9, 586 (2019).
Google Scholar
Linak, W. P. et al. Ultrafine ash aerosols from coal combustion: characterization and health effects. Powder Technol. 31, 1929–1937 (2007).
Kulmala, M., Kerminen, V. M., Petaja, T., Ding, A. J. & Wang, L. Atmospheric gas-to-particle conversion: why NPF events are observed in megacities? Faraday Discuss. 200, 271–288 (2017).
Google Scholar
Junkermann, W. & Hacker, J. M. Ultrafine particles in the lower troposphere: major sources, invisible plumes, and meteorological transport processes. B. Am. Meteorol. Soc. 99, 2587–2602 (2018).
Ito, A. & Penner, J. E. Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000. Glob. Biogeochem. Cy. 19, GB2028, https://doi.org/10.1029/2004GB002374 (2005).
Google Scholar
Popovicheva, O. et al. Physicochemical characterization of smoke aerosol during large-scale wildfires: extreme event of August 2010 in Moscow. Atmos. Environ. 96, 405–414 (2014).
Google Scholar
Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 18, 483–507 (2009).
Liu, Y., Goodrick, S. & Heilman, W. Wildland fire emissions, carbon, and climate: wildfire–climate interactions. For. Ecol. Manag. 317, 80–96 (2014).
Zhang, Y., Obrist, D., Zielinska, B. & Gertler, A. Particulate emissions from different types of biomass burning. Atmos. Environ. 72, 27–35 (2013).
Google Scholar
Urbanski, S. P., Hao, W. M. & Baker, S. in Developments in Environmental Science, Vol. 8 (eds Bytnerowicz, A., Arbaugh, M. J., Riebau, A. R. & Andersen, C.) Ch. 4, 79–107 (Elsevier, 2008).
Hosseini, S. et al. Particle size distributions from laboratory-scale biomass fires using fast response instruments. Atmos. Chem. Phys. 10, 8065–8076 (2010).
Google Scholar
Diapouli, E., Chaloulakou, A. & Koutrakis, P. Estimating the concentration of indoor particles of outdoor origin: a review. J. Air Waste Manag. 63, 1113–1129 (2013).
Google Scholar
Liu, J., Fung, D., Jiang, J. & Zhu, Y. Ultrafine particle emissions from essential-oil-based mosquito repellent products. Indoor Air 24, 327–335 (2014).
Google Scholar
Lofroth, G., Stensman, C. & Brandhorst-Satzkorn, M. Indoor sources of mutagenic aerosol particulate matter: smoking, cooking and incense burning. Mutat. Res. 261, 21–28 (1991).
Google Scholar
Manigrasso, M., Vitali, M., Protano, C. & Avino, P. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room. Sci. Total. Environ. 598, 1015–1026 (2017).
Google Scholar
Manigrasso, M., Vitali, M., Protano, C. & Avino, P. Ultrafine particles in domestic environments: regional doses deposited in the human respiratory system. Environ. Int. 118, 134–145 (2018).
Google Scholar
Protano, C., Manigrasso, M., Avino, P. & Vitali, M. Second-hand smoke generated by combustion and electronic smoking devices used in real scenarios: Ultrafine particle pollution and age-related dose assessment. Environ. Int. 107, 190–195 (2017).
Google Scholar
Wensing, M., Schripp, T., Uhde, E. & Salthammer, T. Ultra-fine particles release from hardcopy devices: sources, real-room measurements and efficiency of filter accessories. Sci. Total. Environ. 407, 418–427 (2008).
Google Scholar
Fromme, H. & Schober, W. Waterpipes and e-cigarettes: Impact of alternative smoking techniques on indoor air quality and health. Atmos. Environ. 106, 429–441 (2015).
Google Scholar
Zhao, T., Shu, S., Guo, Q. & Zhu, Y. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes. Atmos. Environ. 134, 61–69 (2016).
Google Scholar
Mikheev, V. B., Brinkman, M. C., Granville, C. A., Gordon, S. M. & Clark, P. I. Real-time measurement of electronic cigarette aerosol size distribution and metals content analysis. Nicotine Tob. Res. 18, 1895–1902 (2016).
Google Scholar
Williams, M., Villarreal, A., Bozhilov, K., Lin, S. & Talbot, P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS ONE 8, e57987 (2013).
Google Scholar
Zhao, T. et al. Characteristics of secondhand electronic cigarette aerosols from active human use. Aerosol Sci. Tech. 51, 1368–1376 (2017).
Google Scholar
Nguyen, C., Li, L. Q., Sen, C. A., Ronquillo, E. & Zhu, Y. F. Fine and ultrafine particles concentrations in vape shops. Atmos. Environ. 211, 159–169 (2019).
Google Scholar
Meng, O. et al. Particles released from primary e-cigarette vaping: particle size distribution and particle deposition in the human respiratory tract. Am. J. Resp. Crit. Care 195, A1023 (2017).
Bieser, J., Aulinger, A., Matthias, V., Quante, M. & Denier van der Gon, H. A. Vertical emission profiles for Europe based on plume rise calculations. Environ. Pollut. 159, 2935–2946 (2011).
Google Scholar
Heinzeller, D., Junkermann, W. & Kunstmann, H. in High Performance Computing in Science and Engineering ´16 (eds Nagel, W. E., Kröner, D. H. & Resch, M. M.) 559–576 (Springer, Cham, Stuttgart, 2016).
Joint Research Centre. Particle Measurement Programme (PMP): Inter-laboratory correlation exercise with Condensation Particle Counters (CPCs). (Publications Office of the European Union, 2018).
Heal, M. R., Kumar, P. & Harrison, R. M. Particles, air quality, policy and health. Chem. Soc. Rev. 41, 6606, https://doi.org/10.1039/c2cs35076a (2012).
Google Scholar