Friday, November 8, 2024

Ultrafine particles: unique physicochemical properties relevant to health and disease

Share


  • 1.

    Li, N. et al. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J. Allergy Clin. Immun. 138, 386–396 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Seigneur, C. Air Pollution (Cambridge University Press, 2019).

  • 3.

    Hofman, J. et al. Ultrafine particles in four European urban environments: results from a new continuous long-term monitoring network. Atmos. Environ. 136, 68–81 (2016).

    CAS 

    Google Scholar 

  • 4.

    Miller, M. R. et al. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11, 4542–4552 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Terzano, C., Di Stefano, F., Conti, V., Graziani, E. & Petroianni, A. Air pollution ultrafine particles: toxicity beyond the lung. Eur. Rev. Med. Pharm. 14, 809–821 (2010).

    CAS 

    Google Scholar 

  • 6.

    Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Persp. 113, 823–839 (2005).

    CAS 

    Google Scholar 

  • 7.

    Qi, Z. et al. Particulate matter emission characteristics and removal efficiencies of a low-low temperature electrostatic precipitator. Energ. Fuel. 31, 1741–1746 (2017).

    CAS 

    Google Scholar 

  • 8.

    Feng, Y., Li, Y. & Cui, L. Critical review of condensable particulate matter. Fuel 224, 801–813 (2018).

    CAS 

    Google Scholar 

  • 9.

    Yang, H.-H., Lee, K.-T., Hsieh, Y.-S., Luo, S.-W. & Li, M.-S. Filterable and condensable fine particulate emissions from stationary sources. Aerosol Air Qual. Res. 14, 2010–2016 (2014).

    CAS 

    Google Scholar 

  • 10.

    Frank, B., Schuster, M. E., Schlogl, R. & Su, D. S. Emission of highly activated soot particulate–the other side of the coin with modern diesel engines. Angew. Chem. Int. Ed. 52, 2673–2677 (2013).

    CAS 

    Google Scholar 

  • 11.

    Junkermann, W., Vogel, B. & Sutton, M. A. The climate penalty for clean fossil fuel combustion. Atmos. Chem. Phys. 11, 12917–12924 (2011).

    CAS 

    Google Scholar 

  • 12.

    Fan, J. et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 359, 411–418 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Rosenfeld, D., Clavner, M. & Nirel, R. Pollution and dust aerosols modulating tropical cyclones intensities. Atmos. Res. 102, 66–76 (2011).

    CAS 

    Google Scholar 

  • 14.

    Whitby, K. T. The physical characteristics of sulfur aerosols. Atmos. Environ. 12, 135–159 (1978).

    CAS 

    Google Scholar 

  • 15.

    Spurny, K. R. On the physics, chemistry and toxicology of ultrafine anthropogenic, atmospheric aerosols (UAAA): new advances. Toxicol. Lett. 96–97, 253–261 (1998).

    PubMed 

    Google Scholar 

  • 16.

    Ehn, M. et al. A large source of low-volatility secondary organic aerosol. Nature 506, 476–479 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    McMurry, P. H., Shepherd, M. F. & Vickery, J. S. Particulate Matter Science for Policy Makers: a NARSTO Assessment (Cambridge University Press, 2004).

  • 18.

    Kulmala, M. et al. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143–176 (2004).

    CAS 

    Google Scholar 

  • 19.

    Zhao, Y., Wang, F. & Zhao, J. Size-resolved ultrafine particle deposition and brownian coagulation from gasoline vehicle exhaust in an environmental test chamber. Environ. Sci. Technol. 49, 12153–12160 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Manigrasso, M. & Avino, P. Fast evolution of urban ultrafine particles: Implications for deposition doses in the human respiratory system. Atmos. Environ. 51, 116–123 (2012).

    CAS 

    Google Scholar 

  • 21.

    Zhang, L. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ. 35, 549–560 (2001).

    CAS 

    Google Scholar 

  • 22.

    Manigrasso, M., Stabile, L., Avino, P. & Buonanno, G. Influence of measurement frequency on the evaluation of short-term dose of sub-micrometric particles during indoor and outdoor generation events. Atmos. Environ. 67, 130–142 (2013).

    CAS 

    Google Scholar 

  • 23.

    Pronk, A., Coble, J. & Stewart, P. A. Occupational exposure to diesel engine exhaust: a literature review. J. Expo. Sci. Env. Epid. 19, 443–457 (2009).

    CAS 

    Google Scholar 

  • 24.

    Wang, Y. G., Hopke, P. K., Chalupa, D. C. & Utell, M. J. Long-term study of urban ultrafine particles and other pollutants. Atmos. Environ. 45, 7672–7680 (2011).

    CAS 

    Google Scholar 

  • 25.

    Aas, W. et al. Lessons learnt from the first EMEP intensive measurement periods. Atmos. Chem. Phys. 12, 8073–8094 (2012).

    CAS 

    Google Scholar 

  • 26.

    Goodarzi, F. The rates of emissions of fine particles from some Canadian coal-fired power plants. Fuel 85, 425–433 (2006).

    CAS 

    Google Scholar 

  • 27.

    Tsukada, M. et al. Emission potential of condensable suspended particulate matter from flue gas of solid waste combustion. Powder Technol. 180, 140–144 (2008).

    CAS 

    Google Scholar 

  • 28.

    U.S. Environmental Protection Agency. 2017 National Emissions Inventory, August 2019 Point Release, Technical Support Document (U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 2019).

  • 29.

    European Environment Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019, Technical Guidance To Prepare National Emission Inventories (Publications Office of the European Union, Luxembourg, 2019).

    Google Scholar 

  • 30.

    Lei, Y., Zhang, Q., He, K. B. & Streets, D. G. Primary anthropogenic aerosol emission trends for China, 1990–2005. Atmos. Chem. Phys. 11, 931–954 (2011).

    CAS 

    Google Scholar 

  • 31.

    Choi, D. S. et al. Study on the contribution ratios of particulate matter emissions in differential provinces concerning condensable particulate matter. Energ. Environ. 30, 1206–1218 (2019).

    CAS 

    Google Scholar 

  • 32.

    Morino, Y. et al. Contributions of condensable particulate matter to atmospheric organic aerosol over Japan. Environ. Sci. Technol. 52, 8456–8466 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Denier van der Gon, H. A. C. et al. Particulate emissions from residential wood combustion in Europe – revised estimates and an evaluation. Atmos. Chem. Phys. 15, 6503–6519 (2015).

    CAS 

    Google Scholar 

  • 34.

    Petzold, A. et al. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 13, 8365–8379 (2013).

    CAS 

    Google Scholar 

  • 35.

    Liu, X. F., Peng, L., Bai, H. L. & Mu, L. Characteristics of organic carbon and elemental carbon in the ambient air of coking plant. Aerosol Air Qual. Res. 15, 1485–1493 (2015).

    CAS 

    Google Scholar 

  • 36.

    Cao, J. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmos. Environ. 37, 1451–1460 (2003).

    CAS 

    Google Scholar 

  • 37.

    Watson, J. G., Chow, J. C. & Chen, L. W. A. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 5, 65–102 (2005).

    CAS 

    Google Scholar 

  • 38.

    Aitken, J. On the number of dust particles in the atmosphere. Nature 37, 428–430 (1888).

    Google Scholar 

  • 39.

    Pollak, L. W. & Metnieks, A. L. New calibration of photo-electric nucleus counters. Geofisica Pura e Applicata 43, 285–301 (1959).

    Google Scholar 

  • 40.

    Grebot, B. et al. Industrial Emissions Of Nanomaterials And Ultrafine Particles: Final Report (AMEC Environment & Infrastructure UK Limited, London, 2011).

  • 41.

    Harrison, R. M., Beddows, D. C. & Dall’Osto, M. PMF analysis of wide-range particle size spectra collected on a major highway. Environ. Sci. Technol. 45, 5522–5528 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Venecek, M. A., Yu, X. & Kleeman, M. J. Predicted ultrafine particulate matter source contribution across the continental United States during summertime air pollution events. Atmos. Chem. Phys. 19, 9399–9412 (2019).

    CAS 

    Google Scholar 

  • 43.

    Argyropoulos, G. et al. Concentration levels and source apportionment of ultrafine particles in road microenvironments. Atmos. Environ. 129, 68–78 (2016).

    CAS 

    Google Scholar 

  • 44.

    Anenberg, S. C., Miller, J., Henze, D. K., Minjares, R. & Achakulwisut, P. The global burden of transportation tailpipe emissions on air pollution-related mortality in 2010 and 2015. Environ. Res. Lett. 14, https://doi.org/10.1088/1748-9326/ab35fc (2019).

  • 45.

    Ris, C. U.S. EPA health assessment for diesel engine exhaust: a review. Inhal. Toxicol. 19, 229–239 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Jones, A. M., Harrison, R. M., Barratt, B. & Fuller, G. A large reduction in airborne particle number concentrations at the time of the introduction of “sulphur free” diesel and the London Low Emission Zone. Atmos. Environ. 50, 129–138 (2012).

    CAS 

    Google Scholar 

  • 47.

    Liati, A., Schreiber, D., Arroyo Rojas Dasilva, Y. & Dimopoulos Eggenschwiler, P. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective. Environ. Pollut. 239, 661–669 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Ježek, I., Katrašnik, T., Westerdahl, D. & Močnik, G. Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method. Atmos. Chem. Phys. 15, 11011–11026 (2015).

    Google Scholar 

  • 49.

    R’Mili, B. et al. Physico-chemical characterization of fine and ultrafine particles emitted during diesel particulate filter active regeneration of Euro5 diesel vehicles. Environ. Sci. Technol. 52, 3312–3319 (2018).

    PubMed 

    Google Scholar 

  • 50.

    Arnold, F. et al. First online measurements of sulfuric acid gas in modern heavy-duty diesel engine exhaust: implications for nanoparticle formation. Environ. Sci. Technol. 46, 11227–11234 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Burtscher, H. Physical characterization of particulate emissions from diesel engines: a review. J. Aerosol Sci. 36, 896–932 (2005).

    CAS 

    Google Scholar 

  • 52.

    Shrivastava, M., Nguyen, A., Zheng, Z., Wu, H. W. & Jung, H. S. Kinetics of soot oxidation by NO2. Environ. Sci. Technol. 44, 4796–4801 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Kittelson, D. B., Watts, W. F. & Johnson, J. P. On-road and laboratory evaluation of combustion aerosols—Part1: summary of diesel engine results. J. Aerosol Sci. 37, 913–930 (2006).

    CAS 

    Google Scholar 

  • 54.

    Choi, S., Oh, K. C. & Lee, C. B. The effects of filter porosity and flow conditions on soot deposition/oxidation and pressure drop in particulate filters. Energy 77, 327–337 (2014).

    CAS 

    Google Scholar 

  • 55.

    Fino, D. & Specchia, V. Open issues in oxidative catalysis for diesel particulate abatement. Powder Technol. 180, 64–73 (2008).

    CAS 

    Google Scholar 

  • 56.

    Giechaskiel, B. et al. Particle number measurements in the European legislation and future JRC activities. Combustion Engines. Combust. Engines 174, 3–16 (2018).

    Google Scholar 

  • 57.

    Dwyer, H. et al. Emissions from a diesel car during regeneration of an active diesel particulate filter. J. Aerosol Sci. 41, 541–552 (2010).

    CAS 

    Google Scholar 

  • 58.

    Beatrice, C., Di Iori, S., Guido, C. & Napolitano, P. Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Exp. Therm. Fluid Sci. 39, 45–53 (2012).

    CAS 

    Google Scholar 

  • 59.

    Yamada, H., Inomata, S. & Tanimoto, H. Mechanisms of increased particle and VOC emissions during DPF active regeneration and practical emissions considering regeneration. Environ. Sci. Technol. 51, 2914–2923 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Ko, J., Si, W., Jin, D., Myung, C. L. & Park, S. Effect of active regeneration on time-resolved characteristics of gaseous emissions and size-resolved particle emissions from light-duty diesel engine. J. Aerosol Sci. 91, 62–77 (2016).

    CAS 

    Google Scholar 

  • 61.

    Wilson, W. E. et al. General motors sulfate dispersion experiment: summary of EPA measurements. J. Air Pollut. Control Assoc. 27, 46–51 (1977).

    CAS 

    Google Scholar 

  • 62.

    Karthikeyan, S. et al. Nitrogen dioxide and ultrafine particles dominate the biological effects of inhaled diesel exhaust treated by a catalyzed diesel particulate filter. Toxicol. Lett. 135, 437–450 (2013).

    CAS 

    Google Scholar 

  • 63.

    Lucking, A. J. et al. Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation 123, 1721–1728 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    He, C., Li, J., Ma, Z., Tan, J. & Zhao, L. High NO2/NOx emissions downstream of the catalytic diesel particulate filter: An influencing factor study. J. Environ. Sci. 35, 55–61 (2015).

    Google Scholar 

  • 65.

    Holmen, B. A. & Ayala, A. Ultrafine PM emissions from natural gas, oxidation-catalyst diesel, and particle-trap diesel heavy-duty transit buses. Environ. Sci. Technol. 36, 5041–5050 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Khalek, I. A., Bougher, T. L., Merritt, P. M. & Zielinska, B. Regulated and unregulated emissions from highway heavy-duty diesel engines complying with U.S. Environmental Protection Agency 2007 emissions standards. J. Air Waste Manag. 61, 427–442 (2011).

    CAS 

    Google Scholar 

  • 67.

    Guan, B., Zhan, R., Lin, H. & Huang, Z. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl. Therm. Eng. 66, 395–414 (2014).

    CAS 

    Google Scholar 

  • 68.

    Karjalainen, P. et al. Reduction of heavy-duty diesel exhaust particle number and mass at low exhaust temperature driving by the DOC and the SCR. SAE Int. J. Fuels Lubr. 5, 1114–1122 (2012).

    CAS 

    Google Scholar 

  • 69.

    Rodríguez, F., Bernard, Y., Dornoff, J. & Mock, P. Recommendations for Post-Euro 6 – Standards for Light-Duty Vehicles in the European Union (International Council on Clean Transportation Europe, Berlin, 2019).

    Google Scholar 

  • 70.

    Piock, W., Hoffmann, G., Berndorfer, A., Salemi, P. & Fusshoeller, B. Strategies towards meeting future particulate matter emission requirements in homogeneous gasoline direct injection engines. SAE Int. J. Engines 4, 1455–1468 (2011).

    Google Scholar 

  • 71.

    Giechaskiel, B., Joshi, A., Ntziachristos, L. & Dilara, P. European regulatory framework and particulate matter emissions of gasoline light-duty vehicles: a review. Catalysts 9, 586 (2019).

    CAS 

    Google Scholar 

  • 72.

    Linak, W. P. et al. Ultrafine ash aerosols from coal combustion: characterization and health effects. Powder Technol. 31, 1929–1937 (2007).

    Google Scholar 

  • 73.

    Kulmala, M., Kerminen, V. M., Petaja, T., Ding, A. J. & Wang, L. Atmospheric gas-to-particle conversion: why NPF events are observed in megacities? Faraday Discuss. 200, 271–288 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Junkermann, W. & Hacker, J. M. Ultrafine particles in the lower troposphere: major sources, invisible plumes, and meteorological transport processes. B. Am. Meteorol. Soc. 99, 2587–2602 (2018).

    Google Scholar 

  • 75.

    Ito, A. & Penner, J. E. Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000. Glob. Biogeochem. Cy. 19, GB2028, https://doi.org/10.1029/2004GB002374 (2005).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Popovicheva, O. et al. Physicochemical characterization of smoke aerosol during large-scale wildfires: extreme event of August 2010 in Moscow. Atmos. Environ. 96, 405–414 (2014).

    CAS 

    Google Scholar 

  • 77.

    Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 18, 483–507 (2009).

    Google Scholar 

  • 78.

    Liu, Y., Goodrick, S. & Heilman, W. Wildland fire emissions, carbon, and climate: wildfire–climate interactions. For. Ecol. Manag. 317, 80–96 (2014).

    Google Scholar 

  • 79.

    Zhang, Y., Obrist, D., Zielinska, B. & Gertler, A. Particulate emissions from different types of biomass burning. Atmos. Environ. 72, 27–35 (2013).

    CAS 

    Google Scholar 

  • 80.

    Urbanski, S. P., Hao, W. M. & Baker, S. in Developments in Environmental Science, Vol. 8 (eds Bytnerowicz, A., Arbaugh, M. J., Riebau, A. R. & Andersen, C.) Ch. 4, 79–107 (Elsevier, 2008).

  • 81.

    Hosseini, S. et al. Particle size distributions from laboratory-scale biomass fires using fast response instruments. Atmos. Chem. Phys. 10, 8065–8076 (2010).

    CAS 

    Google Scholar 

  • 82.

    Diapouli, E., Chaloulakou, A. & Koutrakis, P. Estimating the concentration of indoor particles of outdoor origin: a review. J. Air Waste Manag. 63, 1113–1129 (2013).

    CAS 

    Google Scholar 

  • 83.

    Liu, J., Fung, D., Jiang, J. & Zhu, Y. Ultrafine particle emissions from essential-oil-based mosquito repellent products. Indoor Air 24, 327–335 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Lofroth, G., Stensman, C. & Brandhorst-Satzkorn, M. Indoor sources of mutagenic aerosol particulate matter: smoking, cooking and incense burning. Mutat. Res. 261, 21–28 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Manigrasso, M., Vitali, M., Protano, C. & Avino, P. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room. Sci. Total. Environ. 598, 1015–1026 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Manigrasso, M., Vitali, M., Protano, C. & Avino, P. Ultrafine particles in domestic environments: regional doses deposited in the human respiratory system. Environ. Int. 118, 134–145 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Protano, C., Manigrasso, M., Avino, P. & Vitali, M. Second-hand smoke generated by combustion and electronic smoking devices used in real scenarios: Ultrafine particle pollution and age-related dose assessment. Environ. Int. 107, 190–195 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Wensing, M., Schripp, T., Uhde, E. & Salthammer, T. Ultra-fine particles release from hardcopy devices: sources, real-room measurements and efficiency of filter accessories. Sci. Total. Environ. 407, 418–427 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 89.

    Fromme, H. & Schober, W. Waterpipes and e-cigarettes: Impact of alternative smoking techniques on indoor air quality and health. Atmos. Environ. 106, 429–441 (2015).

    CAS 

    Google Scholar 

  • 90.

    Zhao, T., Shu, S., Guo, Q. & Zhu, Y. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes. Atmos. Environ. 134, 61–69 (2016).

    CAS 

    Google Scholar 

  • 91.

    Mikheev, V. B., Brinkman, M. C., Granville, C. A., Gordon, S. M. & Clark, P. I. Real-time measurement of electronic cigarette aerosol size distribution and metals content analysis. Nicotine Tob. Res. 18, 1895–1902 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Williams, M., Villarreal, A., Bozhilov, K., Lin, S. & Talbot, P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS ONE 8, e57987 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 93.

    Zhao, T. et al. Characteristics of secondhand electronic cigarette aerosols from active human use. Aerosol Sci. Tech. 51, 1368–1376 (2017).

    CAS 

    Google Scholar 

  • 94.

    Nguyen, C., Li, L. Q., Sen, C. A., Ronquillo, E. & Zhu, Y. F. Fine and ultrafine particles concentrations in vape shops. Atmos. Environ. 211, 159–169 (2019).

    CAS 

    Google Scholar 

  • 95.

    Meng, O. et al. Particles released from primary e-cigarette vaping: particle size distribution and particle deposition in the human respiratory tract. Am. J. Resp. Crit. Care 195, A1023 (2017).

    Google Scholar 

  • 96.

    Bieser, J., Aulinger, A., Matthias, V., Quante, M. & Denier van der Gon, H. A. Vertical emission profiles for Europe based on plume rise calculations. Environ. Pollut. 159, 2935–2946 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 97.

    Heinzeller, D., Junkermann, W. & Kunstmann, H. in High Performance Computing in Science and Engineering ´16 (eds Nagel, W. E., Kröner, D. H. & Resch, M. M.) 559–576 (Springer, Cham, Stuttgart, 2016).

  • 98.

    Joint Research Centre. Particle Measurement Programme (PMP): Inter-laboratory correlation exercise with Condensation Particle Counters (CPCs). (Publications Office of the European Union, 2018).

  • 99.

    Heal, M. R., Kumar, P. & Harrison, R. M. Particles, air quality, policy and health. Chem. Soc. Rev. 41, 6606, https://doi.org/10.1039/c2cs35076a (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 



  • Source link

    Subscribe
    Notify of
    guest

    0 Comments
    Oldest
    Newest Most Voted
    Inline Feedbacks
    View all comments

    Read more

    Search more

    Latest News