Friday, April 19, 2024
0

Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources

Share


  • 1

    Baba, T. et al. Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, [corrected] reflecting the ancestral genome of the human-pathogenic staphylococci. J. Bacteriol. 191, 1180–1190, doi: 10.1128/JB.01058-08 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2

    Kloos, W. E. et al. Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipericus sp. nov., and Macrococcus bovicus sp. no. and Macrococcus carouselicus sp. nov. Int. J. Syst. Bacteriol. 48 Pt 3, 859–877, doi: 10.1099/00207713-48-3-859 (1998).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3

    Mannerová, S. et al. Macrococcus brunensis sp. nov., Macrococcus hajekii sp. nov. and Macrococcus lamae sp. nov., from the skin of llamas. Int. J. of Syst. Evol. Microbiol. 53, 1647–1654, doi: 10.1099/ijs.0.02683-0 (2003).

    CAS 
    Article 

    Google Scholar 

  • 4

    Gobeli Brawand, S. et al. Macrococcus canis sp. nov., a skin bacterium associated with infections in dogs. Int. J. of Syst. Evol. Microbiol. Epub ahead of print, doi: 10.1099/ijsem.0.001673 (2016).

  • 5

    Giannino, M. L., Marzotto, M., Dellaglio, F. & Feligini, M. Study of microbial diversity in raw milk and fresh curd used for Fontina cheese production by culture-independent methods. Int. J. Food Microbiol. 130, 188–195, doi: 10.1016/j.ijfoodmicro.2009.01.022 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6

    Fontana, C., Cappa, F., Rebecchi, A. & Cocconcelli, P. S. Surface microbiota analysis of Taleggio, Gorgonzola, Casera, Scimudin and Formaggio di Fossa Italian cheeses. Int. J. Food Microbiol. 138, 205–211, doi: 10.1016/j.ijfoodmicro.2010.01.017 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7

    Zhong, Z. et al. Bacterial microbiota compositions of naturally fermented milk are shaped by both geographic origin and sample type. J. Dairy Sci. 99, 7832–7841, doi: 10.3168/jds.2015-10825 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8

    Tsubakishita, S., Kuwahara-Arai, K., Baba, T. & Hiramatsu, K. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus . Antimicrob. Agents Chemother. 54, 1469–1475, doi: 10.1128/AAC.00575-09 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9

    Cicconi-Hogan, K. M. et al. Short communication: Prevalence of methicillin resistance in coagulase-negative staphylococci and Staphylococcus aureus isolated from bulk milk on organic and conventional dairy farms in the United States. J. Dairy Sci. 97, 2959–2964, doi: 10.3168/jds.2013-7523 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10

    Micheel, V. et al. Screening agars for MRSA: evaluation of a stepwise diagnostic approach with two different selective agars for the screening for methicillin-resistant Staphylococcus aureus (MRSA). Mil. Med. Res. 2, 18, doi: 10.1186/s40779-015-0046-1 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11

    Rubin, J. E. & Chirino-Trejo, M. Inducibly cefoxitin-resistant Macrococcus-like organism falsely identified as methicillin-resistant Staphylococcus aureus on CHROMagar with oxacillin. J. Clin. Microbiol. 48, 3037–3038, doi: 10.1128/JCM.00519-10 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12

    Gómez-Sanz, E., Schwendener, S., Thomann, A., Gobeli Brawand, S. & Perreten, V. First staphylococcal cassette chromosome mec containing a mecB-carrying gene complex independent of transposon Tn6045 in a Macrococcus caseolyticus isolate from a canine infection. Antimicrob. Agents Chemother. 59, 4577–4583, doi: 10.1128/AAC.05064-14 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13

    Ito, T. et al. Guidelines for reporting novel mecA gene homologues. Antimicrob. Agents Chemother. 56, 4997–4999 (2012).

    CAS 
    Article 

    Google Scholar 

  • 14

    Hiramatsu, K. et al. Genomic basis for methicillin resistance in Staphylococcus aureus . Infect. Chemother. 45, 117–136, doi: 10.3947/ic.2013.45.2.117 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15

    Pinho, M. G., de Lencastre, H. & Tomasz, A. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc. Natl. Acad. Sci. USA 98, 10886–10891, doi: 10.1073/pnas.191260798 (2001).

    CAS 
    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16

    CLSI. The Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 9th ed., vol. 32, no. 2. Approved standard M07-A9. (Clinical and Laboratory Standards Institute, 2012).

  • 17

    Peacock, S. J. & Paterson, G. K. Mechanisms of methicillin resistance in Staphylococcus aureus . Annu. Rev. Biochem. 84, 577–601, doi: 10.1146/annurev-biochem-060614-034516 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18

    Zhang, H. Z., Hackbarth, C. J., Chansky, K. M. & Chambers, H. F. A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science 291, 1962–1965, doi: 10.1126/science.1055144 (2001).

    CAS 
    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19

    Ryffel, C., Kayser, F. H. & Berger-Bächi, B. Correlation between regulation of mecA transcription and expression of methicillin resistance in staphylococci. Antimicrob. Agents Chemother. 36, 25–31 (1992).

    CAS 
    Article 

    Google Scholar 

  • 20

    McKinney, T. K., Sharma, V. K., Craig, W. A. & Archer, G. L. Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and β-lactamase regulators. J. Bacteriol. 183, 6862–6868, doi: 10.1128/JB.183.23.6862-6868.2001 (2001).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21

    Arêde, P., Ministro, J. & Oliveira, D. C. Redefining the role of the β-lactamase locus in methicillin-resistant Staphylococcus aureus: β-lactamase regulators disrupt the MecI-mediated strong repression on mecA and optimize the phenotypic expression of resistance in strains with constitutive mecA expression. Antimicrob. Agents Chemother. 57, 3037–3045, doi: 10.1128/AAC.02621-12 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22

    Hackbarth, C. J. & Chambers, H. F. blaI and blaR1 regulate β-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus . Antimicrob. Agents Chemother. 37, 1144–1149 (1993).

    CAS 
    Article 

    Google Scholar 

  • 23

    Katayama, Y., Ito, T. & Hiramatsu, K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus . Antimicrob. Agents Chemother. 44, 1549–1555 (2000).

    CAS 
    Article 

    Google Scholar 

  • 24

    Chambers, H. F. & DeLeo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).

    CAS 
    Article 

    Google Scholar 

  • 25

    Shore, A. C. & Coleman, D. C. Staphylococcal cassette chromosome mec: recent advances and new insights. Int. J. Med. Microbiol. 303, 350–359, doi: 10.1016/j.ijmm.2013.02.002 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26

    Solovyev, V. & Salamov, A. Automatic annotation of microbial genomes and metagenomic sequences. In Metagenomics and its applications in agriculture, biomedicine and environmental studies (Ed. Li, R. W. ). p., 61–78 (Nova Science Publishers, 2011).

  • 27

    García-Castellanos, R. et al. On the transcriptional regulation of methicillin resistance: MecI repressor in complex with its operator. J. Biol. Chem. 279, 17888–17896, doi: 10.1074/jbc.M313123200 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28

    Lewis, R. A. & Dyke, K. G. MecI represses synthesis from the β-lactamase operon of Staphylococcus aureus . J. Antimicrob. Chemother. 45, 139–144 (2000).

    CAS 
    Article 

    Google Scholar 

  • 29

    Arêde, P. & Oliveira, D. C. Proteolysis of mecA repressor is essential for expression of methicillin resistance by Staphylococcus aureus . Antimicrob. Agents Chemother. 57, 2001–2002, doi: 10.1128/AAC.02510-12 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30

    Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A. & Charlier, P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 234–258, doi: 10.1111/j.1574-6976.2008.00105.x (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31

    Lovering, A. L. et al. Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J. Biol. Chem. 287, 32096–32102, doi: 10.1074/jbc.M112.355644 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32

    Otero, L. H. et al. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc. Natl. Acad. Sci. USA 110, 16808–16813, doi: 10.1073/pnas.1300118110 (2013).

    CAS 
    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33

    Schwendener, S. & Perreten, V. New shuttle vector-based expression system to generate polyhistidine-tagged fusion proteins in Staphylococcus aureus and Escherichia coli . Appl. Environ Microbiol. 81, 3243–3254, doi: 10.1128/AEM.03803-14 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34

    Katayama, Y., Zhang, H. Z., Hong, D. & Chambers, H. F. Jumping the barrier to β-lactam resistance in Staphylococcus aureus . J. Bacteriol. 185, 5465–5472 (2003).

    CAS 
    Article 

    Google Scholar 

  • 35

    EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. http://www.eucast.org Version 6.0 (2016).

  • 36

    Arêde, P., Milheiriço, C., de Lencastre, H. & Oliveira, D. C. The anti-repressor MecR2 promotes the proteolysis of the mecA repressor and enables optimal expression of β-lactam resistance in MRSA. PLoS Pathog. 8, e1002816, doi: 10.1371/journal.ppat.1002816 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37

    Novick, R. P., Christie, G. E. & Penadés, J. R. The phage-related chromosomal islands of Gram-positive bacteria. Nat. Rev. Microbiol. 8, 541–551, doi: 10.1038/nrmicro2393 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38

    Chen, H. J. et al. New structure of phage-related islands carrying fusB and a virulence gene in fusidic acid-resistant Staphylococcus epidermidis . Antimicrob. Agents Chemother. 57, 5737–5739, doi: 10.1128/AAC.01433-13 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39

    Xu, G. L., Kapfer, W., Walter, J. & Trautner, T. A. BsuBI–an isospecific restriction and modification system of PstI: characterization of the BsuBI genes and enzymes. Nucleic Acids Res. 20, 6517–6523 (1992).

    CAS 
    Article 

    Google Scholar 

  • 40

    Kramer, N., Hahn, J. & Dubnau, D. Multiple interactions among the competence proteins of Bacillus subtilis . Mol. Microbiol. 65, 454–464, doi: 10.1111/j.1365-2958.2007.05799.x (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41

    Yadav, T. et al. Bacillus subtilis DprA recruits RecA onto single-stranded DNA and mediates annealing of complementary strands coated by SsbB and SsbA. J. Biol. Chem. 288, 22437–22450, doi: 10.1074/jbc.M113.478347 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42

    Zimmerly, S. & Wu, L. An unexplored diversity of reverse transcriptases in bacteria. Microbiol. Spectr. 3, MDNA3-0058-2014, doi: 10.1128/microbiolspec.MDNA3-0058-2014 (2015).

  • 43

    Esposito, D. & Scocca, J. J. The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res. 25, 3605–3614 (1997).

    CAS 
    Article 

    Google Scholar 

  • 44

    Goerke, C., Köller, J. & Wolz, C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus . Antimicrob. Agents Chemother. 50, 171–177, doi: 10.1128/AAC.50.1.171-177.2006 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45

    Fornelos, N., Browning, D. F. & Butala, M. The use and abuse of LexA by mobile genetic elements. Trends Microbiol. 24, 391–401, doi: 10.1016/j.tim.2016.02.009 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46

    Ito, T. et al. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC . Antimicrob. Agents Chemother. 48, 2637–2651 (2004).

    CAS 
    Article 

    Google Scholar 

  • 47

    Sivaraman, K., Venkataraman, N., Tsai, J., Dewell, S. & Cole, A. M. Genome sequencing and analysis reveals possible determinants of Staphylococcus aureus nasal carriage. BMC Genomics 9, 433, doi: 10.1186/1471-2164-9-433 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48

    Kreiswirth, B. N. et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712 (1983).

    CAS 
    ADS 
    Article 

    Google Scholar 

  • 49

    Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644, doi: 10.1093/jac/dks261 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article 

    Google Scholar 

  • 51

    Sigrist, C. J. et al. New and continuing developments at PROSITE. Nucleic Acids Res. 41, D344–347, doi: 10.1093/nar/gks1067 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52

    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–226, doi: 10.1093/nar/gku1221 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53

    Schenk, S. & Laddaga, R. A. Improved method for electroporation of Staphylococcus aureus . FEMS Microbiol. Lett. 73, 133–138 (1992).

    CAS 
    Article 

    Google Scholar 

  • 54

    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular cloning. A laboratory manual. 2nd ed, (Cold Spring Harbor Laboratory Press, 1989).

  • 55

    Vaudaux, P. et al. Intensive therapy with ceftobiprole medocaril of experimental foreign-body infection by methicillin-resistant Staphylococcus aureus . Antimicrob. Agents Chemother. 49, 3789–3793, doi: 10.1128/AAC.49.9.3789-3793.2005 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874, doi: 10.1093/molbev/msw054 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57

    Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010 (2011).

    CAS 
    Article 

    Google Scholar 



  • Source link

    Subscribe
    Notify of
    guest

    0 Comments
    Inline Feedbacks
    View all comments

    Read more

    Search more

    Latest News