Saturday, September 14, 2024

E-Liquid Autofluorescence can be used as a Marker of Vaping Deposition and Third-Hand Vape Exposure

Share


  • 1.

    Etter, J. F. & Bullen, C. Saliva cotinine levels in users of electronic cigarettes. Eur Respir J
    38, 1219–1220, doi:10.1183/09031936.00066011 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Pagano, T. et al. Determination of Nicotine Content and Delivery in Disposable Electronic Cigarettes Available in the United States by Gas Chromatography-Mass Spectrometry. Nicotine Tob Res
    18, 700–707, doi:10.1093/ntr/ntv120 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Papaseit, E. et al. Monitoring nicotine intake from e-cigarettes: measurement of parent drug and metabolites in oral fluid and plasma. Clin Chem Lab Med
    55, 415–423, doi:10.1515/cclm-2016-0405 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Riker, C. A., Lee, K., Darville, A. & Hahn, E. J. E-cigarettes: promise or peril? Nurs Clin North Am
    47, 159–171, doi:10.1016/j.cnur.2011.10.002 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Wall, M. A. Cotinine in serum, saliva, and urine of nonsmokers, passive smokers, and active smokers. American journal of public health (1971)
    78, 699–701 (1988).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Zhu, S. H. et al. Four hundred and sixty brands of e-cigarettes and counting: implications for product regulation. Tob Control
    23(Suppl 3), iii3–9, doi:10.1136/tobaccocontrol-2014-051670 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Manigrasso, M., Buonanno, G., Fuoco, F. C., Stabile, L. & Avino, P. Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environ Pollut
    196, 257–267, doi:10.1016/j.envpol.2014.10.013 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Bennett, W. D. et al. Targeting delivery of aerosols to different lung regions. J Aerosol Med
    15, 179–188, doi:10.1089/089426802320282301 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Kleinstreuer, C. & Feng, Y. Lung deposition analyses of inhaled toxic aerosols in conventional and less harmful cigarette smoke: a review. Int J Environ Res Public Health
    10, 4454–4485, doi:10.3390/ijerph10094454 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Veal, D. A., Deere, D., Ferrari, B., Piper, J. & Attfield, P. V. Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods
    243, 191–210 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Monici, M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev
    11, 227–256, doi:10.1016/S1387-2656(05)11007-2 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Roshchina, V. V. The Fluorescence Methods to Study Neurotransmitters (Biomediators) in Plant Cells. J Fluoresc
    26, 1029–1043, doi:10.1007/s10895-016-1791-6 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Pankow, W., Neumann, K., Ruschoff, J. & von Wichert, P. Human alveolar macrophages: comparison of cell size, autofluorescence, and HLA-DR antigen expression in smokers and nonsmokers. Cancer Detect Prev
    19, 268–273 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Paszkiewicz, G. M. & Pauly, J. L. Spectrofluorometric method for measuring tobacco smoke particulate matter on cigarette filters and Cambridge pads. Tob Control
    17(Suppl 1), i53–58, doi:10.1136/tc.2007.024109 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 15.

    Paszkiewicz, G. M. et al. Increased human buccal cell autofluorescence is a candidate biomarker of tobacco smoking. Cancer Epidemiol Biomarkers Prev
    17, 239–244, doi:10.1158/1055-9965.EPI-07-0162 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Behar, R. Z. et al. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicol In Vitro
    28, 198–208 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Sherwood, C. L. & Boitano, S. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine. Respir Res
    17, 57, doi:10.1186/s12931-016-0369-9 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Mikheev, V. B., Brinkman, M. C., Granville, C. A., Gordon, S. M. & Clark, P. I. Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis. Nicotine Tob Res
    18, 1895–1902, doi:10.1093/ntr/ntw128 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Alderman, S. L., Song, C., Moldoveanu, S. C. & Cole, S. K. Particle Size Distribution of E-Cigarette Aerosols and the Relationship to Cambridge Filter Pad Collection Efficiency. Beiträge zur Tabakforschung International/Contributions to Tobacco Research
    26, 183–190 (2016).

    Google Scholar 

  • 20.

    Ferrante, G. et al. Third-hand smoke exposure and health hazards in children. Monaldi Arch Chest Dis
    79, 38–43, doi:10.4081/monaldi.2013.108 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Fleming, T., Anderson, C., Amin, S. & Ashley, J. Third-hand tobacco smoke: Significant vector for PAH exposure or non-issue? Integr Environ Assess Manag
    8, 763–764, doi:10.1002/ieam.1337 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Merritt, T. A., Mazela, J., Adamczak, A. & Merritt, T. The impact of second-hand tobacco smoke exposure on pregnancy outcomes, infant health, and the threat of third-hand smoke exposure to our environment and to our children. Przegl Lek
    69, 717–720 (2012).

    PubMed 

    Google Scholar 

  • 23.

    Winickoff, J. P. et al. Beliefs about the health effects of “thirdhand” smoke and home smoking bans. Pediatrics
    123, e74–79, doi:10.1542/peds.2008-2184 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Specht, E. A., Braselmann, E. & Palmer, A. E. A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging. Annu Rev Physiol
    79, 93–117, doi:10.1146/annurev-physiol-022516-034055 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    El-Hellani, A. et al. Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics. Nicotine Tob Res, doi:10.1093/ntr/ntw280 (2016).

  • 26.

    Havel, C. M., Benowitz, N. L., Jacob, P., 3rd & St Helen, G. An Electronic Cigarette Vaping Machine for the Characterization of Aerosol Delivery and Composition. Nicotine Tob Res, doi:10.1093/ntr/ntw147 (2016).

  • 27.

    Fireman, E., Edelheit, R., Stark, M. & Shai, A. B. Differential pattern of deposition of nanoparticles in the airways of exposed workers. J Nanopart Res
    19, 30, doi:10.1007/s11051-016-3711-8 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Geiser, M. & Kreyling, W. G. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol
    7, 2, doi:10.1186/1743-8977-7-2 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Roberts, C., Wagler, G. & Carr, M. M. Environmental Tobacco Smoke: Public Perception of Risks of Exposing Children to Second- and Third-Hand Tobacco Smoke. J Pediatr Health Care
    31, e7–e13, doi:10.1016/j.pedhc.2016.08.008 (2017).

    Article 

    Google Scholar 

  • 30.

    Matt, G. E. et al. When smokers quit: exposure to nicotine and carcinogens persists from thirdhand smoke pollution. Tob Control. doi:10.1136/tobaccocontrol-2016-053119 (2016).

    Google Scholar 

  • 31.

    Bush, D. & Goniewicz, M. L. A pilot study on nicotine residues in houses of electronic cigarette users, tobacco smokers, and non-users of nicotine-containing products. Int J Drug Policy
    26, 609–611, doi:S0955-3959(15)00070-5 (2015).

  • 32.

    Goniewicz, M. L., Kuma, T., Gawron, M., Knysak, J. & Kosmider, L. Nicotine levels in electronic cigarettes. Nicotine Tob Res
    15, 158–166, doi:10.1093/ntr/nts103 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Lee, Y. H., Gawron, M. & Goniewicz, M. L. Changes in puffing behavior among smokers who switched from tobacco to electronic cigarettes. Addict Behav
    48, 1–4, doi:10.1016/j.addbeh.2015.04.003 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Lopez, A. A. et al. Effects of Electronic Cigarette Liquid Nicotine Concentration on Plasma Nicotine and Puff Topography in Tobacco Cigarette Smokers: A Preliminary Report. Nicotine Tob Res
    18, 720–723, doi:10.1093/ntr/ntv182 (2016).

    Article 
    PubMed 

    Google Scholar 



  • Source link

    Subscribe
    Notify of
    guest

    0 Comments
    Oldest
    Newest Most Voted
    Inline Feedbacks
    View all comments

    Read more

    Search more

    Latest News