Etter, J. F. & Bullen, C. Saliva cotinine levels in users of electronic cigarettes. Eur Respir J
38, 1219–1220, doi:10.1183/09031936.00066011 (2011).
Google Scholar
Pagano, T. et al. Determination of Nicotine Content and Delivery in Disposable Electronic Cigarettes Available in the United States by Gas Chromatography-Mass Spectrometry. Nicotine Tob Res
18, 700–707, doi:10.1093/ntr/ntv120 (2016).
Google Scholar
Papaseit, E. et al. Monitoring nicotine intake from e-cigarettes: measurement of parent drug and metabolites in oral fluid and plasma. Clin Chem Lab Med
55, 415–423, doi:10.1515/cclm-2016-0405 (2017).
Google Scholar
Riker, C. A., Lee, K., Darville, A. & Hahn, E. J. E-cigarettes: promise or peril? Nurs Clin North Am
47, 159–171, doi:10.1016/j.cnur.2011.10.002 (2012).
Google Scholar
Wall, M. A. Cotinine in serum, saliva, and urine of nonsmokers, passive smokers, and active smokers. American journal of public health (1971)
78, 699–701 (1988).
Google Scholar
Zhu, S. H. et al. Four hundred and sixty brands of e-cigarettes and counting: implications for product regulation. Tob Control
23(Suppl 3), iii3–9, doi:10.1136/tobaccocontrol-2014-051670 (2014).
Google Scholar
Manigrasso, M., Buonanno, G., Fuoco, F. C., Stabile, L. & Avino, P. Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environ Pollut
196, 257–267, doi:10.1016/j.envpol.2014.10.013 (2015).
Google Scholar
Bennett, W. D. et al. Targeting delivery of aerosols to different lung regions. J Aerosol Med
15, 179–188, doi:10.1089/089426802320282301 (2002).
Google Scholar
Kleinstreuer, C. & Feng, Y. Lung deposition analyses of inhaled toxic aerosols in conventional and less harmful cigarette smoke: a review. Int J Environ Res Public Health
10, 4454–4485, doi:10.3390/ijerph10094454 (2013).
Google Scholar
Veal, D. A., Deere, D., Ferrari, B., Piper, J. & Attfield, P. V. Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods
243, 191–210 (2000).
Google Scholar
Monici, M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev
11, 227–256, doi:10.1016/S1387-2656(05)11007-2 (2005).
Google Scholar
Roshchina, V. V. The Fluorescence Methods to Study Neurotransmitters (Biomediators) in Plant Cells. J Fluoresc
26, 1029–1043, doi:10.1007/s10895-016-1791-6 (2016).
Google Scholar
Pankow, W., Neumann, K., Ruschoff, J. & von Wichert, P. Human alveolar macrophages: comparison of cell size, autofluorescence, and HLA-DR antigen expression in smokers and nonsmokers. Cancer Detect Prev
19, 268–273 (1995).
Google Scholar
Paszkiewicz, G. M. & Pauly, J. L. Spectrofluorometric method for measuring tobacco smoke particulate matter on cigarette filters and Cambridge pads. Tob Control
17(Suppl 1), i53–58, doi:10.1136/tc.2007.024109 (2008).
Google Scholar
Paszkiewicz, G. M. et al. Increased human buccal cell autofluorescence is a candidate biomarker of tobacco smoking. Cancer Epidemiol Biomarkers Prev
17, 239–244, doi:10.1158/1055-9965.EPI-07-0162 (2008).
Google Scholar
Behar, R. Z. et al. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicol In Vitro
28, 198–208 (2014).
Google Scholar
Sherwood, C. L. & Boitano, S. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine. Respir Res
17, 57, doi:10.1186/s12931-016-0369-9 (2016).
Google Scholar
Mikheev, V. B., Brinkman, M. C., Granville, C. A., Gordon, S. M. & Clark, P. I. Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis. Nicotine Tob Res
18, 1895–1902, doi:10.1093/ntr/ntw128 (2016).
Google Scholar
Alderman, S. L., Song, C., Moldoveanu, S. C. & Cole, S. K. Particle Size Distribution of E-Cigarette Aerosols and the Relationship to Cambridge Filter Pad Collection Efficiency. Beiträge zur Tabakforschung International/Contributions to Tobacco Research
26, 183–190 (2016).
Ferrante, G. et al. Third-hand smoke exposure and health hazards in children. Monaldi Arch Chest Dis
79, 38–43, doi:10.4081/monaldi.2013.108 (2013).
Google Scholar
Fleming, T., Anderson, C., Amin, S. & Ashley, J. Third-hand tobacco smoke: Significant vector for PAH exposure or non-issue? Integr Environ Assess Manag
8, 763–764, doi:10.1002/ieam.1337 (2012).
Google Scholar
Merritt, T. A., Mazela, J., Adamczak, A. & Merritt, T. The impact of second-hand tobacco smoke exposure on pregnancy outcomes, infant health, and the threat of third-hand smoke exposure to our environment and to our children. Przegl Lek
69, 717–720 (2012).
Google Scholar
Winickoff, J. P. et al. Beliefs about the health effects of “thirdhand” smoke and home smoking bans. Pediatrics
123, e74–79, doi:10.1542/peds.2008-2184 (2009).
Google Scholar
Specht, E. A., Braselmann, E. & Palmer, A. E. A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging. Annu Rev Physiol
79, 93–117, doi:10.1146/annurev-physiol-022516-034055 (2017).
Google Scholar
El-Hellani, A. et al. Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics. Nicotine Tob Res, doi:10.1093/ntr/ntw280 (2016).
Havel, C. M., Benowitz, N. L., Jacob, P., 3rd & St Helen, G. An Electronic Cigarette Vaping Machine for the Characterization of Aerosol Delivery and Composition. Nicotine Tob Res, doi:10.1093/ntr/ntw147 (2016).
Fireman, E., Edelheit, R., Stark, M. & Shai, A. B. Differential pattern of deposition of nanoparticles in the airways of exposed workers. J Nanopart Res
19, 30, doi:10.1007/s11051-016-3711-8 (2017).
Google Scholar
Geiser, M. & Kreyling, W. G. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol
7, 2, doi:10.1186/1743-8977-7-2 (2010).
Google Scholar
Roberts, C., Wagler, G. & Carr, M. M. Environmental Tobacco Smoke: Public Perception of Risks of Exposing Children to Second- and Third-Hand Tobacco Smoke. J Pediatr Health Care
31, e7–e13, doi:10.1016/j.pedhc.2016.08.008 (2017).
Google Scholar
Matt, G. E. et al. When smokers quit: exposure to nicotine and carcinogens persists from thirdhand smoke pollution. Tob Control. doi:10.1136/tobaccocontrol-2016-053119 (2016).
Bush, D. & Goniewicz, M. L. A pilot study on nicotine residues in houses of electronic cigarette users, tobacco smokers, and non-users of nicotine-containing products. Int J Drug Policy
26, 609–611, doi:S0955-3959(15)00070-5 (2015).
Goniewicz, M. L., Kuma, T., Gawron, M., Knysak, J. & Kosmider, L. Nicotine levels in electronic cigarettes. Nicotine Tob Res
15, 158–166, doi:10.1093/ntr/nts103 (2013).
Google Scholar
Lee, Y. H., Gawron, M. & Goniewicz, M. L. Changes in puffing behavior among smokers who switched from tobacco to electronic cigarettes. Addict Behav
48, 1–4, doi:10.1016/j.addbeh.2015.04.003 (2015).
Google Scholar
Lopez, A. A. et al. Effects of Electronic Cigarette Liquid Nicotine Concentration on Plasma Nicotine and Puff Topography in Tobacco Cigarette Smokers: A Preliminary Report. Nicotine Tob Res
18, 720–723, doi:10.1093/ntr/ntv182 (2016).
Google Scholar