Dinakar, C. & O’Connor, G. T. The health effects of electronic cigarettes. N Engl J Med. 375, 1372–1381, https://doi.org/10.1056/NEJMra1502466 (2016).
Google Scholar
Chun, L. F., Moazed, F., Calfee, C. S., Matthay, M. A. & Gotts, J. E. Pulmonary toxicity of e-cigarettes. Am J Physiol Lung Cell Mol Physiol. 313, L193–L206, https://doi.org/10.1152/ajplung.00071.2017 (2017).
Google Scholar
McNeill, A. et al. E-cigarettes: an evidence update. Public Health England, August 2015. https://www.gov.uk/government/publications/e-cigarettes-an-evidence-update (accessed November 30, 2017).
Piepoli, M. F. et al. European guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 37, 2315–81, https://doi.org/10.1093/eurheartj/ehw106 (2016).
Google Scholar
Pasquereau, A., Guignard, R., Andler, R. & Nguyen-Thanh, V. Electronic cigarettes, quit attempts and smoking cessation: a 6-month follow-up. Addiction. 112, 1620–1628, https://doi.org/10.1111/add.13869 (2017).
Google Scholar
Pepper, J. K. et al. Risk Factors for Youth E-Cigarette “Vape Trick” Behavior. J Adolesc Health. https://doi.org/10.1016/j.jadohealth.2017.05.010 (2017).
Kasza, K. A. et al. Tobacco-Product use by adults and youths in the united states in 2013 and 2014. N Engl J Med. 376, 342–353, https://doi.org/10.1056/NEJMx170001 (2017).
Google Scholar
Global e-cigarette & vaporizer, device and aftermarket, analysis and forecast, 2016–2025. https://www.researchandmarkets.com/reports/3845485/global-e-cigarette-and-vaporizer-device-and (accessed November 30, 2017).
Talih, S. et al. “Juice Monsters”: Sub-ohm vaping and toxic volatile aldehyde emissions. Chem Res Toxicol. 30, 1791–1793, https://doi.org/10.1021/acs.chemrestox.7b00212 (2017).
Google Scholar
Barrington-Trimis, J. L. et al. Type of e-cigarette device used among adolescents and young adults: Findings from a pooled analysis of 8 studies of 2,166 vapers. Nicotine Tob Res, https://doi.org/10.1093/ntr/ntx069 (2017).
Etter, J. F. Throat hit in users of the electronic cigarette: An exploratory study. Psychol Addict Behav. 30, 93–100, https://doi.org/10.1037/adb0000137 (2016).
Google Scholar
Yingst, J. M. et al. Factors associated with electronic cigarette users’ device preferences and transition from first generation to advanced generation devices. Nicotine Tob Res. 17, 1242–6, https://doi.org/10.1093/ntr/ntv052 (2015).
Google Scholar
Dawkins, L. E., Kimber, C. F., Doig, M., Feyerabend, C. & Corcoran, O. Self-titration by experienced e-cigarette users: blood nicotine delivery and subjective effects. Psychopharmacology (Berl). 233, 2933–41, https://doi.org/10.1007/s00213-016-4338-2 (2016).
Google Scholar
Marsot, A. & Simon, N. Nicotine and cotinine levels with electronic cigarette: A Review. Int J Toxicol. 35, 179–85, https://doi.org/10.1177/1091581815618935 (2016).
Google Scholar
Benowitz, N. L. & Fraiman, J. B. Cardiovascular effects of electronic cigarettes. Nat Rev Cardiol. 14, 447–456, https://doi.org/10.1038/nrcardio.2017.36 (2017).
Google Scholar
Carnevale, R. et al. Acute Impact of Tobacco vs Electronic Cigarette Smoking on Oxidative Stress and Vascular Function. Chest. 150, 606–12, https://doi.org/10.1016/j.chest.2016.04.012 (2016).
Google Scholar
Vlachopoulos, C. et al. Electronic Cigarette Smoking Increases Aortic Stiffness and Blood Pressure in Young Smokers. J Am Coll Cardiol. 67, 2802–2803, https://doi.org/10.1016/j.jacc.2016.03.569 (2016).
Google Scholar
Benowitz, N. L. & Burbank, A. D. Cardiovascular toxicity of nicotine: Implications for electronic cigarette use. Trends Cardiovasc Med 26, 515–23, https://doi.org/10.1016/j.tcm.2016.03.00 (2016).
Google Scholar
Jensen, R. P., Strongin, R. M. & Peyton, D. H. Solvent Chemistry in the Electronic Cigarette Reaction Vessel. Sci Rep. 7, 42549, https://doi.org/10.1038/srep42549 (2017).
Google Scholar
Geiss, O., Bianchi, I. & Barrero-Moreno, J. Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours. Int J Hyg Environ Health. 219, 268–77, https://doi.org/10.1016/j.ijheh.2016.01.004 (2016).
Google Scholar
Farsalinos, K. E., Voudris, V. & Poulas, K. E-cigarettes generate high levels of aldehydes only in ‘dry puff’ conditions. Addiction. 110, 1352–6, https://doi.org/10.1111/add.12942 (2015).
Google Scholar
Dreyfuss, C. et al. L-NAME iontophoresis: a tool to assess NO-mediated vasoreactivity during thermal hyperemic vasodilation in humans. J Cardiovasc Pharmacol. 61, 361–8, https://doi.org/10.1097/FJC.0b013e3182858f81 (2013).
Google Scholar
Wauters, A. et al. Acute exposure to diesel exhaust impairs nitric oxide-mediated endothelial vasomotor function by increasing endothelial oxidative stress. Hypertension. 62, 352–8, https://doi.org/10.1161/HYPERTENSIONAHA.111.00991 (2013).
Google Scholar
Guelen, I. et al. Finometer, finger pressure measurements with the possibility to reconstruct brachial pressure. Blood Press Monit 8, 27–30 (2003).
Google Scholar
Adamopoulos, D. et al. Acute effects of nicotine on arterial stiffness and wave reflection in healthy young non-smokers. Clin Exp Pharmacol Physiol. 36, 784–9, https://doi.org/10.1111/j.1440-1681.2009.05141.x (2009).
Google Scholar
Doupis, J., Papanas, N., Cohen, A., McFarlan, L. & Horton, E. Pulse wave analysis by applanation tonometry for the measurement of arterial stiffness. Open Cardiovasc Med J. 10, 188–95, https://doi.org/10.2174/1874192401610010188 (2016).
Google Scholar
Franck, T. et al. A new easy method for specific measurement of active myeloperoxidase in human biological fluids and tissue extracts. Talanta. 80, 723–9, https://doi.org/10.1016/j.talanta.2009.07.052 (2009).
Google Scholar
Delporte, C. et al. Simultaneous measurement of protein-bound 3-chlorotyrosine and homocitrulline by LC-MS/MS after hydrolysis assisted by microwave: application to the study of myeloperoxidase activity during hemodialysis. Talanta. 99, 603–9, https://doi.org/10.1016/j.talanta.2012.06.044 (2012).
Google Scholar
Farsalinos, K., Poulas, K. & Voudris, V. Changes in puffing topography and nicotine consumption depending on the power setting of electronic cigarettes. Nicotine Tob Res. https://doi.org/10.1093/ntr/ntx219 (2017).
Spindle, T. R. et al. The influence of a mouthpiece-based topography measurement device on electronic cigarette user’s plasma nicotine concentration, heart rate, and subjective effects under directed and ad libitum use conditions. Nicotine Tob Res. 19, 469–476, https://doi.org/10.1093/ntr/ntw174 (2017).
Google Scholar
Kosmider, L., Kimber, C. F., Kurek, J., Corcoran, O. & Dawkins, L. E. Compensatory puffing with lower nicotine concentration e-liquids increases carbonyl exposure in e-cigarette aerosols. Nicotine Tob Res. https://doi.org/10.1093/ntr/ntx162 (2017).
Wagener, T. L. et al. Have combustible cigarettes met their match? The nicotine delivery profiles and harmful constituent exposures of second-generation and third-generation electronic cigarette users. Tob Control. 26, e23–e28, https://doi.org/10.1136/tobaccocontrol-2016-053041 (2017).
Google Scholar
Benowitz, N. L., Jacob, P. 3rd, Jones, R. T. & Rosenberg, J. Interindividual variability in the metabolism and cardiovascular effects of nicotine in man. J Pharmacol Exp Ther. 221, 368–72 (1982).
Google Scholar
Dawkins, L. & Corcoran, O. Acute electronic cigarette use: nicotine delivery and subjective effects in regular users. Psychopharmacology (Berl). 231, 401–7, https://doi.org/10.1007/s00213-013-3249-8 (2014).
Google Scholar
Kellogg, D. L. Jr, Zhao, J. L., Coey, U. & Green, J. V. Acetylcholine-induced vasodilation is mediated by nitric oxide and prostaglandins in human skin. J Appl Physiol (1985) 98, 629–32 (2005).
Google Scholar
Bull, H. A., Pittilo, R. M., Woolf, N. & Machin, S. J. The effect of nicotine on human endothelial cell release of prostaglandins and ultrastructure. Br J Exp Pathol. 69, 413–21 (1988).
Google Scholar
Zou, M. H. & Bachschmid, M. Hypoxia-reoxygenation triggers coronary vasospasm in isolated bovine coronary arteries via tyrosine nitration of prostacyclin synthase. J Exp Med. 190, 135–9 (1999).
Google Scholar
Klein, L. W. Cigarette smoking, atherosclerosis and the coronary hemodynamic response: a unifying hypothesis. J Am Coll Cardiol. 4, 972–4 (1984).
Google Scholar
Tonnessen, B. H., Severson, S. R., Hurt, R. D. & Miller, V. M. Modulation of nitric-oxide synthase by nicotine. J Pharmacol Exp Ther. 295, 601–6 (2000).
Google Scholar
Csató, V. et al. Myeloperoxidase evokes substantial vasomotor responses in isolated skeletal muscle arterioles of the rat. Acta Physiol (Oxf). 214, 109–23, https://doi.org/10.1111/apha.12488 (2015).
Google Scholar
Reidel, B. et al. E-Cigarette Use Causes a Unique Innate Immune Response in the Lung Involving Increased Neutrophilic Activation and Altered Mucin Secretion. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.201708-1590OC (2017).
Rudolph, T. K. et al. Myeloperoxidase deficiency preserves vasomotor function in humans. Eur Heart J. 33, 1625–34, https://doi.org/10.1093/eurheartj/ehr193 (2012).
Google Scholar
Wolk, R. et al. Hemodynamic and autonomic effects of smokeless tobacco in healthy young men. J Am Coll Cardiol. 45, 910–4 (2005).
Google Scholar
Etter, J. F. Characteristics of users and usage of different types of electronic cigarettes: findings from an online survey. Addiction 111, 724–33, https://doi.org/10.1111/add.13240 (2016).
Google Scholar